Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Join the Fabric FabCon Global Hackathon—running virtually through Nov 3. Open to all skill levels. $10,000 in prizes! Register now.

Reply
UserBI_PA
New Member

Complex count first occurrence per date.

Hi magicians.
I need your wisdom to create a calculated column called 'CPU' based on the following conditions:

- Per each day ('Date' column)
- The first occurrence of Placa column
- That fulfill tow conditions:  Type colmun = 'x' and Status column = 'close' 

If everything above is true then mark '1' on 'CPU' column.

 

Example of the desired result:

 

DateTypeStatusPlacaCPU
1/01/2022xopenaaa0
3/01/2022yclosebbb0
4/01/2022ycloseaaa0
1/01/2022yopenaaa0
2/01/2022ycloseccc0
2/01/2022yopenaaa0
2/01/2022xcloseaaa1
2/01/2022xopenbbb0
3/01/2022yopenccc0
3/01/2022xcloseaaa1
3/01/2022xcloseaaa0
3/01/2022xcloseaaa0
3/01/2022xcloseccc1
4/01/2022xopenaaa0
1/01/2022yclosebbb0
2/01/2022xcloseccc1
4/01/2022yopenbbb0
4/01/2022xcloseccc1
1/01/2022xclosebbb1
1/01/2022xclosebbb0

 

I manage to do this wrapping my dataset with python script however when working with bigger data the script's process never ends.
Finally, I partially solved this problem with DAX  but only works when my visual is in days, when the context change to months everything breaks. This is my spell:

CPU = CALCULATE(
DISTINCTCOUNT(Table1[Placa]),
FILTER(Table1,Table1[Status]="close"),
FILTER(Table1,Table1[Type]=X||Table1[Type]=x)
)
 
Thank you in advance!
1 ACCEPTED SOLUTION
AlexisOlson
Super User
Super User

DAX cannot distinguish between identical rows, so you need some sort of ordering index to know which is "first". As a result, this is probably better done in the query editor (which can easily generate an index column).

 

Here's an example of what the query might look like if you did this entirely in the query editor:

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMtQ3MNQ3MjAyUtJRqgDi/ILUPCCVmJioFKsTrWSMJF0JxMk5+cWpQDopKQksb4JDHqbfEE0ezXgjHNqTk5OxyuPRXoHFdnR5qHaY49E9B5WGWW5MwHRaycPsN8EfNehBix41uAIHm/GVmIGDbju6dvSEg249XvlYAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Date = _t, Type = _t, Status = _t, Placa = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"Date", type date}, {"Type", type text}, {"Status", type text}, {"Placa", type text}}),
    #"Added Index" = Table.AddIndexColumn(#"Changed Type", "Index", 0, 1, Int64.Type),
    #"Filtered Rows" = Table.SelectRows(#"Added Index", each ([Type] = "x") and ([Status] = "close")),
    #"Grouped Rows" = Table.Group(#"Filtered Rows", {"Date", "Placa"}, {{"Index", each List.Min([Index]), type number}}),
    #"Merged Queries" = Table.NestedJoin(#"Added Index", {"Index"}, #"Grouped Rows", {"Index"}, "Grouped Rows", JoinKind.LeftOuter),
    #"Expanded Grouped Rows" = Table.ExpandTableColumn(#"Merged Queries", "Grouped Rows", {"Index"}, {"CPU"}),
    #"Transformed Column" = Table.TransformColumns(#"Expanded Grouped Rows", {{"CPU", each if _ = null then 0 else 1, Int64.Type}})
in
    #"Transformed Column"

(Try pasting this into the Advanced Editor in a new blank query.)

 

Alternatively, you can just add the index column in the query editor and do the rest in DAX.

CPU =
VAR _MinIndex =
    CALCULATE (
        MIN ( Table1[Index] ),
        ALLEXCEPT ( Table1, Table1[Date], Table1[Placa] ),
        Table1[Status] = "close",
        Table1[Type] = "x"
    )
RETURN
    IF ( Table1[Index] = _MinIndex, 1, 0 )

View solution in original post

1 REPLY 1
AlexisOlson
Super User
Super User

DAX cannot distinguish between identical rows, so you need some sort of ordering index to know which is "first". As a result, this is probably better done in the query editor (which can easily generate an index column).

 

Here's an example of what the query might look like if you did this entirely in the query editor:

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("i45WMtQ3MNQ3MjAyUtJRqgDi/ILUPCCVmJioFKsTrWSMJF0JxMk5+cWpQDopKQksb4JDHqbfEE0ezXgjHNqTk5OxyuPRXoHFdnR5qHaY49E9B5WGWW5MwHRaycPsN8EfNehBix41uAIHm/GVmIGDbju6dvSEg249XvlYAA==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Date = _t, Type = _t, Status = _t, Placa = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"Date", type date}, {"Type", type text}, {"Status", type text}, {"Placa", type text}}),
    #"Added Index" = Table.AddIndexColumn(#"Changed Type", "Index", 0, 1, Int64.Type),
    #"Filtered Rows" = Table.SelectRows(#"Added Index", each ([Type] = "x") and ([Status] = "close")),
    #"Grouped Rows" = Table.Group(#"Filtered Rows", {"Date", "Placa"}, {{"Index", each List.Min([Index]), type number}}),
    #"Merged Queries" = Table.NestedJoin(#"Added Index", {"Index"}, #"Grouped Rows", {"Index"}, "Grouped Rows", JoinKind.LeftOuter),
    #"Expanded Grouped Rows" = Table.ExpandTableColumn(#"Merged Queries", "Grouped Rows", {"Index"}, {"CPU"}),
    #"Transformed Column" = Table.TransformColumns(#"Expanded Grouped Rows", {{"CPU", each if _ = null then 0 else 1, Int64.Type}})
in
    #"Transformed Column"

(Try pasting this into the Advanced Editor in a new blank query.)

 

Alternatively, you can just add the index column in the query editor and do the rest in DAX.

CPU =
VAR _MinIndex =
    CALCULATE (
        MIN ( Table1[Index] ),
        ALLEXCEPT ( Table1, Table1[Date], Table1[Placa] ),
        Table1[Status] = "close",
        Table1[Type] = "x"
    )
RETURN
    IF ( Table1[Index] = _MinIndex, 1, 0 )

Helpful resources

Announcements
September Power BI Update Carousel

Power BI Monthly Update - September 2025

Check out the September 2025 Power BI update to learn about new features.

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.

Top Solution Authors
Top Kudoed Authors