Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!Get Fabric Certified for FREE during Fabric Data Days. Don't miss your chance! Request now
Hi,
Good Morning. I need help. My raw table is like in the screenshot below and need help on creating a calculated row that extends - in the case of the screenshot, can be January to December.
- Highlighted in Yellow is the calculated Row
- There will be filters/slicers in the report that can be Group 1 to Group 3
- *can have multiple calculated Rows (different metrics/calculation)
- Target look of the Table/Matrix is a summary of the Raw
- In the case of the screenshot, Columns Category to March will be displayed.
-and probably custom sort the Category
raw data look:
Solved! Go to Solution.
Hi @whillerz ,
Here are the steps you can follow:
1. Create calculated table.
Table 2 =
VAR _table =
SUMMARIZE (
'Table',
'Table'[Group1],
'Table'[Group2],
'Table'[Group3],
"Category", "Offered/Forecast",
"January",
FORMAT (
DIVIDE (
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Offered"
),
[January]
),
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Forecast"
),
[January]
)
),
"Percent"
),
"February",
FORMAT (
DIVIDE (
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Offered"
),
[February]
),
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Forecast"
),
[February]
)
),
"Percent"
),
"March",
FORMAT (
DIVIDE (
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Offered"
),
[March]
),
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Forecast"
),
[March]
)
),
"Percent"
)
)
RETURN
UNION ( 'Table', _table )
2. Result:
According to Power BI's design philosophy, there can't be different data types in the same column, so here they all become text, or you can use Format(), which all become decimal data types
Best Regards,
Liu Yang
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly
Hi @whillerz ,
Here are the steps you can follow:
1. Create calculated table.
Table 2 =
VAR _table =
SUMMARIZE (
'Table',
'Table'[Group1],
'Table'[Group2],
'Table'[Group3],
"Category", "Offered/Forecast",
"January",
FORMAT (
DIVIDE (
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Offered"
),
[January]
),
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Forecast"
),
[January]
)
),
"Percent"
),
"February",
FORMAT (
DIVIDE (
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Offered"
),
[February]
),
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Forecast"
),
[February]
)
),
"Percent"
),
"March",
FORMAT (
DIVIDE (
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Offered"
),
[March]
),
SUMX (
FILTER (
ALL ( 'Table' ),
'Table'[Group1] = EARLIER ( 'Table'[Group1] )
&& 'Table'[Group2] = EARLIER ( 'Table'[Group2] )
&& 'Table'[Group3] = EARLIER ( 'Table'[Group3] )
&& 'Table'[Category] = "Forecast"
),
[March]
)
),
"Percent"
)
)
RETURN
UNION ( 'Table', _table )
2. Result:
According to Power BI's design philosophy, there can't be different data types in the same column, so here they all become text, or you can use Format(), which all become decimal data types
Best Regards,
Liu Yang
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly
Thank you very much! This is perfect!
Check out the November 2025 Power BI update to learn about new features.
Advance your Data & AI career with 50 days of live learning, contests, hands-on challenges, study groups & certifications and more!
| User | Count |
|---|---|
| 103 | |
| 81 | |
| 65 | |
| 50 | |
| 45 |