Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM. Register now.

Reply
maqsud
Helper III
Helper III

Calculate correlation between multiple columns

I have table name Data imported in PowerBI

IDIMPTEXT1IMPTEXT2A
1454.5
2544.3
3444.7

 

 

I want Table in PowerBI which can calculate correlation between IMPTEXT1 with and IMPTEXT2 with A.

Some Column NameA
IMPTEXT10.78 (some correlation value)
IMPTEXT20.85 (some correlation value)

 

I tried following but this measure gives me single correlation value. And i am looking for Table in PowerBI which can be calculated through some DAX.

 

Correlation Coefficient = 
VAR Correlation_Table =
    FILTER (
        ADDCOLUMNS (
            VALUES ( Data[ID] ),
            "Value_X", CALCULATE ( SUM ( Data[IMPTEXT1] ) ),
            "Value_Y", CALCULATE ( SUM ( Data[IMPTEXT2] ) )
        ),
        AND (
            NOT ( ISBLANK ( [Value_X] ) ),
            NOT ( ISBLANK ( [Value_Y] ) )
        )
    )
VAR Count_Items =
    COUNTROWS ( Correlation_Table )
VAR Sum_X =
    SUMX ( Correlation_Table, [Value_X] )
VAR Sum_X2 =
    SUMX ( Correlation_Table, [Value_X] ^ 2 )
VAR Sum_Y =
    SUMX ( Correlation_Table, [Value_Y] )
VAR Sum_Y2 =
    SUMX ( Correlation_Table, [Value_Y] ^ 2 )
VAR Sum_XY =
    SUMX ( Correlation_Table, [Value_X] * [Value_Y] )
VAR Pearson_Numerator =
    Count_Items * Sum_XY - Sum_X * Sum_Y
VAR Pearson_Denominator_X =
    Count_Items * Sum_X2 - Sum_X ^ 2
VAR Pearson_Denominator_Y =
    Count_Items * Sum_Y2 - Sum_Y ^ 2
VAR Pearson_Denominator =
    SQRT ( Pearson_Denominator_X * Pearson_Denominator_Y )
RETURN
    DIVIDE ( Pearson_Numerator, Pearson_Denominator )

 

 

Thank you for time and consideration.

1 ACCEPTED SOLUTION
v-easonf-msft
Community Support
Community Support

Hi , @maqsud 

The Dax you provided is  just to   calculate correlation between IMPTEXT1 and IMPTEXT2 , so it gives you single correlation value.

I think what you want is to calculate  the correlation between IMPTEXT1 and A 

 

Correlation Coefficient_IMPTEXT1 = 
VAR Correlation_Table =
    FILTER (
        ADDCOLUMNS (
            VALUES ( Data[ID] ),
            "Value_X", CALCULATE ( SUM ( Data[IMPTEXT1] ) ),
            "Value_Y", CALCULATE ( SUM ( Data[A] ) )
        ),
        AND (
            NOT ( ISBLANK ( [Value_X] ) ),
            NOT ( ISBLANK ( [Value_Y] ) )
        )
    )
VAR Count_Items =
    COUNTROWS ( Correlation_Table )
VAR Sum_X =
    SUMX ( Correlation_Table, [Value_X] )
VAR Sum_X2 =
    SUMX ( Correlation_Table, [Value_X] ^ 2 )
VAR Sum_Y =
    SUMX ( Correlation_Table, [Value_Y] )
VAR Sum_Y2 =
    SUMX ( Correlation_Table, [Value_Y] ^ 2 )
VAR Sum_XY =
    SUMX ( Correlation_Table, [Value_X] * [Value_Y] )
VAR Pearson_Numerator =
    Count_Items * Sum_XY - Sum_X * Sum_Y
VAR Pearson_Denominator_X =
    Count_Items * Sum_X2 - Sum_X ^ 2
VAR Pearson_Denominator_Y =
    Count_Items * Sum_Y2 - Sum_Y ^ 2
VAR Pearson_Denominator =
    SQRT (ABS( Pearson_Denominator_X * Pearson_Denominator_Y ))
RETURN
    DIVIDE ( Pearson_Numerator, Pearson_Denominator )

 

and the correlation between IMPTEXT2 and A .

 

Correlation Coefficient_IMPTEXT2 = 
VAR Correlation_Table =
    FILTER (
        ADDCOLUMNS (
            VALUES ( Data[ID] ),
            "Value_X", CALCULATE ( SUM ( Data[IMPTEXT2] ) ),
            "Value_Y", CALCULATE ( SUM ( Data[A] ) )
        ),
        AND (
            NOT ( ISBLANK ( [Value_X] ) ),
            NOT ( ISBLANK ( [Value_Y] ) )
        )
    )
VAR Count_Items =
    COUNTROWS ( Correlation_Table )
VAR Sum_X =
    SUMX ( Correlation_Table, [Value_X] )
VAR Sum_X2 =
    SUMX ( Correlation_Table, [Value_X] ^ 2 )
VAR Sum_Y =
    SUMX ( Correlation_Table, [Value_Y] )
VAR Sum_Y2 =
    SUMX ( Correlation_Table, [Value_Y] ^ 2 )
VAR Sum_XY =
    SUMX ( Correlation_Table, [Value_X] * [Value_Y] )
VAR Pearson_Numerator =
    Count_Items * Sum_XY - Sum_X * Sum_Y
VAR Pearson_Denominator_X =
    Count_Items * Sum_X2 - Sum_X ^ 2
VAR Pearson_Denominator_Y =
    Count_Items * Sum_Y2 - Sum_Y ^ 2
VAR Pearson_Denominator =
    SQRT ( ABS(Pearson_Denominator_X * Pearson_Denominator_Y ))
RETURN
    DIVIDE ( Pearson_Numerator, Pearson_Denominator )

 

 

If I misunderstand what you mean ,please feel free to let me know.

 

Best Regards,
Community Support Team _ Eason

 

View solution in original post

3 REPLIES 3
v-easonf-msft
Community Support
Community Support

Hi , @maqsud 

The Dax you provided is  just to   calculate correlation between IMPTEXT1 and IMPTEXT2 , so it gives you single correlation value.

I think what you want is to calculate  the correlation between IMPTEXT1 and A 

 

Correlation Coefficient_IMPTEXT1 = 
VAR Correlation_Table =
    FILTER (
        ADDCOLUMNS (
            VALUES ( Data[ID] ),
            "Value_X", CALCULATE ( SUM ( Data[IMPTEXT1] ) ),
            "Value_Y", CALCULATE ( SUM ( Data[A] ) )
        ),
        AND (
            NOT ( ISBLANK ( [Value_X] ) ),
            NOT ( ISBLANK ( [Value_Y] ) )
        )
    )
VAR Count_Items =
    COUNTROWS ( Correlation_Table )
VAR Sum_X =
    SUMX ( Correlation_Table, [Value_X] )
VAR Sum_X2 =
    SUMX ( Correlation_Table, [Value_X] ^ 2 )
VAR Sum_Y =
    SUMX ( Correlation_Table, [Value_Y] )
VAR Sum_Y2 =
    SUMX ( Correlation_Table, [Value_Y] ^ 2 )
VAR Sum_XY =
    SUMX ( Correlation_Table, [Value_X] * [Value_Y] )
VAR Pearson_Numerator =
    Count_Items * Sum_XY - Sum_X * Sum_Y
VAR Pearson_Denominator_X =
    Count_Items * Sum_X2 - Sum_X ^ 2
VAR Pearson_Denominator_Y =
    Count_Items * Sum_Y2 - Sum_Y ^ 2
VAR Pearson_Denominator =
    SQRT (ABS( Pearson_Denominator_X * Pearson_Denominator_Y ))
RETURN
    DIVIDE ( Pearson_Numerator, Pearson_Denominator )

 

and the correlation between IMPTEXT2 and A .

 

Correlation Coefficient_IMPTEXT2 = 
VAR Correlation_Table =
    FILTER (
        ADDCOLUMNS (
            VALUES ( Data[ID] ),
            "Value_X", CALCULATE ( SUM ( Data[IMPTEXT2] ) ),
            "Value_Y", CALCULATE ( SUM ( Data[A] ) )
        ),
        AND (
            NOT ( ISBLANK ( [Value_X] ) ),
            NOT ( ISBLANK ( [Value_Y] ) )
        )
    )
VAR Count_Items =
    COUNTROWS ( Correlation_Table )
VAR Sum_X =
    SUMX ( Correlation_Table, [Value_X] )
VAR Sum_X2 =
    SUMX ( Correlation_Table, [Value_X] ^ 2 )
VAR Sum_Y =
    SUMX ( Correlation_Table, [Value_Y] )
VAR Sum_Y2 =
    SUMX ( Correlation_Table, [Value_Y] ^ 2 )
VAR Sum_XY =
    SUMX ( Correlation_Table, [Value_X] * [Value_Y] )
VAR Pearson_Numerator =
    Count_Items * Sum_XY - Sum_X * Sum_Y
VAR Pearson_Denominator_X =
    Count_Items * Sum_X2 - Sum_X ^ 2
VAR Pearson_Denominator_Y =
    Count_Items * Sum_Y2 - Sum_Y ^ 2
VAR Pearson_Denominator =
    SQRT ( ABS(Pearson_Denominator_X * Pearson_Denominator_Y ))
RETURN
    DIVIDE ( Pearson_Numerator, Pearson_Denominator )

 

 

If I misunderstand what you mean ,please feel free to let me know.

 

Best Regards,
Community Support Team _ Eason

 

amitchandak
Super User
Super User

@maqsud , refer if these can help

http://breaking-bi.blogspot.com/2018/10/data-science-in-power-bi-correlations.html

https://www.sqlshack.com/use-advanced-analytics-power-bi/

Share with Power BI Enthusiasts: Full Power BI Video (20 Hours) YouTube
Microsoft Fabric Series 60+ Videos YouTube
Microsoft Fabric Hindi End to End YouTube
harshnathani
Community Champion
Community Champion

Hi @maqsud ,

 

Please check if this helps.

 

https://www.youtube.com/watch?v=xtRXakHARZg

 

Regards,

Harsh Nathani

Helpful resources

Announcements
Fabric Data Days Carousel

Fabric Data Days

Advance your Data & AI career with 50 days of live learning, contests, hands-on challenges, study groups & certifications and more!

October Power BI Update Carousel

Power BI Monthly Update - October 2025

Check out the October 2025 Power BI update to learn about new features.

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.