Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Join us at FabCon Vienna from September 15-18, 2025, for the ultimate Fabric, Power BI, SQL, and AI community-led learning event. Save €200 with code FABCOMM. Get registered

Reply
Winnie2024
New Member

error during delta table merge with CHAR data type

I need to create one delte table. And it will be upserted many times as the time on. I have the code like below:

 


from delta.tables import *

DeltaTable.createIfNotExists(spark) \
.tableName("test") \
.addColumn("id", "VARCHAR(15)")\
.addColumn("code", "CHAR(3)")\
.execute()


dt_test = DeltaTable.forName(spark, "test")

dt_test_update = spark.createDataFrame([
("1","001"),
("2","002"),
],
schema=["id","code"]
)

dt_test.alias('test') \
.merge(
dt_test_update.alias('updates'),
'test.id = updates.id'
) \
.whenNotMatchedInsertAll()\
.whenMatchedUpdateAll()\
.execute()


df = spark.sql("select * from test")
display(df)


got the error below :

"Resolved attribute(s) id#33730,code#33731 missing from id#33631,code#33633,_metadata#33735 in operator !Project [id#33730, staticinvoke(class org.apache.spark.sql.catalyst.util.CharVarcharCodegenUtils, StringType, readSidePadding, code#33731, 3, true, false, true) AS code#33732]. Attribute(s) with the same name appear in the operation: id,code. Please check if the right attribute(s) are used.;"


But if I change '.addColumn("code", "CHAR(3)")\' to '.addColumn("code", "VARCHAR(3)")\' when i create the delta table.


It will be OK.

Any idea about this?

 

2 ACCEPTED SOLUTIONS
SachinNandanwar
Super User
Super User

I think it would be better to use STRING data types instead of CHAR



Regards,
Sachin
Check out my Blog

View solution in original post

Anonymous
Not applicable

Hi @Winnie2024 

 

Thanks to @SachinNandanwar 's suggestion. Based on my test, it is very helpful! 

 

PySpark doesn’t have a direct CHAR or VARCHAR type, you can use StringType() or "STRING" to represent the VARCHAR(15) and CHAR(3) data types.

Try

from delta.tables import DeltaTable
from pyspark.sql.types import StringType

# Create a Delta table with two columns
DeltaTable.createIfNotExists(spark) \
    .tableName("test") \
    .addColumn("id", StringType()) \
    .addColumn("code", StringType()) \
    .execute()

or

from delta.tables import *
from pyspark.sql.types import *

DeltaTable.createIfNotExists(spark) \
    .tableName("test") \
    .addColumn("id", "STRING") \
    .addColumn("code", "STRING") \
    .execute()

Based on my test, both of the above work for your later merge test code without any error.

 

Best Regards,
Jing
If this post helps, please Accept it as Solution to help other members find it. Appreciate your Kudos!

View solution in original post

2 REPLIES 2
Anonymous
Not applicable

Hi @Winnie2024 

 

Thanks to @SachinNandanwar 's suggestion. Based on my test, it is very helpful! 

 

PySpark doesn’t have a direct CHAR or VARCHAR type, you can use StringType() or "STRING" to represent the VARCHAR(15) and CHAR(3) data types.

Try

from delta.tables import DeltaTable
from pyspark.sql.types import StringType

# Create a Delta table with two columns
DeltaTable.createIfNotExists(spark) \
    .tableName("test") \
    .addColumn("id", StringType()) \
    .addColumn("code", StringType()) \
    .execute()

or

from delta.tables import *
from pyspark.sql.types import *

DeltaTable.createIfNotExists(spark) \
    .tableName("test") \
    .addColumn("id", "STRING") \
    .addColumn("code", "STRING") \
    .execute()

Based on my test, both of the above work for your later merge test code without any error.

 

Best Regards,
Jing
If this post helps, please Accept it as Solution to help other members find it. Appreciate your Kudos!

SachinNandanwar
Super User
Super User

I think it would be better to use STRING data types instead of CHAR



Regards,
Sachin
Check out my Blog

Helpful resources

Announcements
Join our Fabric User Panel

Join our Fabric User Panel

This is your chance to engage directly with the engineering team behind Fabric and Power BI. Share your experiences and shape the future.

June FBC25 Carousel

Fabric Monthly Update - June 2025

Check out the June 2025 Fabric update to learn about new features.

June 2025 community update carousel

Fabric Community Update - June 2025

Find out what's new and trending in the Fabric community.