Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Prepping for a Fabric certification exam? Join us for a live prep session with exam experts to learn how to pass the exam. Register now.

Reply
Winnie2024
New Member

error during delta table merge with CHAR data type

I need to create one delte table. And it will be upserted many times as the time on. I have the code like below:

 


from delta.tables import *

DeltaTable.createIfNotExists(spark) \
.tableName("test") \
.addColumn("id", "VARCHAR(15)")\
.addColumn("code", "CHAR(3)")\
.execute()


dt_test = DeltaTable.forName(spark, "test")

dt_test_update = spark.createDataFrame([
("1","001"),
("2","002"),
],
schema=["id","code"]
)

dt_test.alias('test') \
.merge(
dt_test_update.alias('updates'),
'test.id = updates.id'
) \
.whenNotMatchedInsertAll()\
.whenMatchedUpdateAll()\
.execute()


df = spark.sql("select * from test")
display(df)


got the error below :

"Resolved attribute(s) id#33730,code#33731 missing from id#33631,code#33633,_metadata#33735 in operator !Project [id#33730, staticinvoke(class org.apache.spark.sql.catalyst.util.CharVarcharCodegenUtils, StringType, readSidePadding, code#33731, 3, true, false, true) AS code#33732]. Attribute(s) with the same name appear in the operation: id,code. Please check if the right attribute(s) are used.;"


But if I change '.addColumn("code", "CHAR(3)")\' to '.addColumn("code", "VARCHAR(3)")\' when i create the delta table.


It will be OK.

Any idea about this?

 

2 ACCEPTED SOLUTIONS
SachinNandanwar
Super User
Super User

I think it would be better to use STRING data types instead of CHAR



Regards,
Sachin
Check out my Blog

View solution in original post

Anonymous
Not applicable

Hi @Winnie2024 

 

Thanks to @SachinNandanwar 's suggestion. Based on my test, it is very helpful! 

 

PySpark doesn’t have a direct CHAR or VARCHAR type, you can use StringType() or "STRING" to represent the VARCHAR(15) and CHAR(3) data types.

Try

from delta.tables import DeltaTable
from pyspark.sql.types import StringType

# Create a Delta table with two columns
DeltaTable.createIfNotExists(spark) \
    .tableName("test") \
    .addColumn("id", StringType()) \
    .addColumn("code", StringType()) \
    .execute()

or

from delta.tables import *
from pyspark.sql.types import *

DeltaTable.createIfNotExists(spark) \
    .tableName("test") \
    .addColumn("id", "STRING") \
    .addColumn("code", "STRING") \
    .execute()

Based on my test, both of the above work for your later merge test code without any error.

 

Best Regards,
Jing
If this post helps, please Accept it as Solution to help other members find it. Appreciate your Kudos!

View solution in original post

2 REPLIES 2
Anonymous
Not applicable

Hi @Winnie2024 

 

Thanks to @SachinNandanwar 's suggestion. Based on my test, it is very helpful! 

 

PySpark doesn’t have a direct CHAR or VARCHAR type, you can use StringType() or "STRING" to represent the VARCHAR(15) and CHAR(3) data types.

Try

from delta.tables import DeltaTable
from pyspark.sql.types import StringType

# Create a Delta table with two columns
DeltaTable.createIfNotExists(spark) \
    .tableName("test") \
    .addColumn("id", StringType()) \
    .addColumn("code", StringType()) \
    .execute()

or

from delta.tables import *
from pyspark.sql.types import *

DeltaTable.createIfNotExists(spark) \
    .tableName("test") \
    .addColumn("id", "STRING") \
    .addColumn("code", "STRING") \
    .execute()

Based on my test, both of the above work for your later merge test code without any error.

 

Best Regards,
Jing
If this post helps, please Accept it as Solution to help other members find it. Appreciate your Kudos!

SachinNandanwar
Super User
Super User

I think it would be better to use STRING data types instead of CHAR



Regards,
Sachin
Check out my Blog

Helpful resources

Announcements
FBCApril_Carousel

Fabric Monthly Update - April 2025

Check out the April 2025 Fabric update to learn about new features.

Notebook Gallery Carousel1

NEW! Community Notebooks Gallery

Explore and share Fabric Notebooks to boost Power BI insights in the new community notebooks gallery.

April2025 Carousel

Fabric Community Update - April 2025

Find out what's new and trending in the Fabric community.