Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Join us at FabCon Vienna from September 15-18, 2025, for the ultimate Fabric, Power BI, SQL, and AI community-led learning event. Save €200 with code FABCOMM. Get registered

Reply
mikkeldema
New Member

NotebookUtils run makes the runned notebook inherit default lakehouse from caller

Hey

 

I have a problem with using NotebookUtils. My design is that I have two workspaces wilt following utilities:

-BRONZE WORKSPACE-

Notebook: Ochrestrator - default lakehouse is Bronze

Notebook: Process Bronze - default lakehouse is Bronze

Datalake: Bronze

 

-SILVER WORKSPACE-

Notebook: Process Silver - default lakehouse is Silver

Datalake: Silver

 

From Orchestrator i make these two notebook runs, but when executing Silver it seems like the default lakehouse is inherited from the calling notebook, because when I print the tables in the default lakehouse from silver it shows the bronze tables.

 

            # Run Bronze Event Processor
            processEventBronze = notebookutils.notebook.run(
                "Bronze Event Processor",
                300,
                {
                    "useRootDefaultLakehouse": True,
                    "entityType": event['eventType'],
                    "schema": entitySourceTransformed,
                    "entityName": entityName,
                    "entityTableName": bronzeTableName,
                    "entityKey": entityKey,
                    "correlationId": correlationId,
                    "payload": payload
                },
                bronzeTargetWorkspace
            )
            print(processEventBronze)

            # Run Silver Event Processor
            processEventSilver = notebookutils.notebook.run(
                "Silver Event Processor",
                300,
                {
                    "useRootDefaultLakehouse": True,
                    "bronzeTableName": bronzeTableName,
                    "silverTableName": silverTableName,
                    "entityKey": entityKey,
                    "entityId": entityId,
                    "entityType": event['eventType']
                },
                silverTargetWorkspace
            )
 
Hope someone has an idea of why this is happening when I try to access the silver lakehouse data.
 
# Load the bronze and silver DataFrames
        bronze_df = spark.read.format("delta").load(f"abfss://{sourceWorkspace}@onelake.dfs.fabric.microsoft.com/{sourceLakehouse}/Tables/{bronzeTableName}").filter(col(entityKey) == entityId)
        silver_df = spark.read.format("delta").load(f"Tables/{silverTableName}").filter(col("source_id") == entityId)
1 ACCEPTED SOLUTION
spencer_sa
Super User
Super User

I didn't know that .run keeps the same default lakehouse, but I can see it makes sense.  The default lakehouse is set at Spark Session start (you can parameterise it though)
.run doesn't create a new spark session, but reuses the old one ("The notebook being referenced runs on the Spark pool of the notebook that calls this function.") from here;
https://learn.microsoft.com/en-us/fabric/data-engineering/notebook-utilities

What we do is explicitly use the ABFSS path rather than default lakehouses.  (we also seperate the Notebooks/Pipelines into a separate workspace completely so have to use ABFSS paths to specify lakehouses.)

So df.read.format('delta').load('abfss://<silverworkspace>@onelake.dfs.fabric.microsoft.com/<silverlakehouse>/Tables/...')

View solution in original post

1 REPLY 1
spencer_sa
Super User
Super User

I didn't know that .run keeps the same default lakehouse, but I can see it makes sense.  The default lakehouse is set at Spark Session start (you can parameterise it though)
.run doesn't create a new spark session, but reuses the old one ("The notebook being referenced runs on the Spark pool of the notebook that calls this function.") from here;
https://learn.microsoft.com/en-us/fabric/data-engineering/notebook-utilities

What we do is explicitly use the ABFSS path rather than default lakehouses.  (we also seperate the Notebooks/Pipelines into a separate workspace completely so have to use ABFSS paths to specify lakehouses.)

So df.read.format('delta').load('abfss://<silverworkspace>@onelake.dfs.fabric.microsoft.com/<silverlakehouse>/Tables/...')

Helpful resources

Announcements
Join our Fabric User Panel

Join our Fabric User Panel

This is your chance to engage directly with the engineering team behind Fabric and Power BI. Share your experiences and shape the future.

June FBC25 Carousel

Fabric Monthly Update - June 2025

Check out the June 2025 Fabric update to learn about new features.

June 2025 community update carousel

Fabric Community Update - June 2025

Find out what's new and trending in the Fabric community.