Power BI is turning 10! Tune in for a special live episode on July 24 with behind-the-scenes stories, product evolution highlights, and a sneak peek at what’s in store for the future.
Save the dateEnhance your career with this limited time 50% discount on Fabric and Power BI exams. Ends August 31st. Request your voucher.
Hello All,
I have to create 2 charts with % of status.
Org | Region | Student | Assignment | Due Date | Completion Date | Assignment Status |
LO | MH | alessandronipaula | COV 2024: | 45473 | 45473
| Completed On-time |
LO | MH | alexandrevitaline | COV 2024: | 45473 | 45448 | Completed On-time |
LO | MH | amoahellen | COV 2024: | 45473 | 45448 | Completed On-time |
LO | MH | andronicajeffrey | COV 2024: | 45473 | 45454 | Completed On-time |
LO | MH | bagirirwajoachim | COV 2024: | 45491 | Not Yet Due | |
LO | MH | baptistemarie | COV 2024: | 45473 | 45446 | Completed On-time |
LO | MH | baralbarsha | COV 2024: | 45491 | Not Yet Due | |
LO | MH | berrouettedymmy | COV 2024: | 45473 | 45449 | Completed On-time |
LO | MH | bien-aimemartine | COV 2024: | 45414 | 45464 | Completed Late |
LO | MH | blairnatasha e | COV 2024: | 45434 | 45453 | Completed Late |
LO | MH | bylundapril | COV 2024: | 45473 | 45467 | Completed On-time |
LO | MH | carcierojulia k | COV 2024: | 45473 | 45473 | Completed On-time |
LO | MH | carusonicholas | COV 2024: | 45473 | 45383 | Completed On-time |
LO | MH | celestinminerve | COV 2024: | 45473 | 45383 | Exemption |
LO | MH | celestinminerve | COV 2024: | 45473 | 45441 | Completed On-time |
LO | MH | ceneusrubens | COV 2024: | 45473 | 45441 | Completed On-time |
LO | MH | ceneusrubens | COV 2024: | 45473 | 45447 | Completed On-time |
LO | MH | charlesmarie | COV 2024: | 45473 | 45446 | Completed On-time |
LO | MH | chrisosthommejeline | COV 2024: | 45473 | 45446 | Completed On-time |
LO | MH | cinea elyserose j | COV 2024: | 45473 | 45443 | Completed On-time |
LO | MH | clarkeandre | COV 2024: | 45473 | 45449 | Completed On-time |
LO | MH | corrigankaren | COV 2024: | 45473 | 45461 | Completed On-time |
LO | MH | cranerebecca | COV 2024: | 45473 | 45449 | Completed On-time |
LO | MH | daymarie stephanie | COV 2024: | 45491 | Not Yet Due | |
LO | MH | del cid navichoqueirza y | COV 2024: | 45473 | 45449 | Completed On-time |
LO | MH | del cid navichoqueirza y | COV 2024: | 45473 | 45449 | Completed On-time |
LO | MH | del cidvilma a | COV 2024: | 45473 | 45450 | Completed On-time |
LO | MH | del cidvilma a | COV 2024: | 45473 | 45450 | Completed On-time |
LO | MH | delicatajulie | COV 2024: | 45428 | 45473 | Completed Late |
LO | MH | demafelizkim | COV 2024: | 45473 | 45450 | Completed On-time |
LO | MH | desirjean | COV 2024: | 45473 | 45450 | Completed On-time |
LO | MH | douyonjean | COV 2024: | 45500 | Not Yet Due | |
LO | MH | ducasseeclide | COV 2024: | 45473 | Past Due | |
LO | MH | edouardgina | COV 2024: | 45473 | Past Due | |
LO | MH | edouardmarie micheline | COV 2024: | 45473 | 45453 | Completed On-time |
LO | MH | escobarrony | COV 2024: | 45473 | 45454 | Completed On-time |
LO | MH | felicianonydia iris | COV 2024: | 45449 | 45467 | Completed Late |
LO | MH | fennesseyshannon | COV 2024: | 45473 | 45415 | Completed On-time |
LO | MH | fleurydarly | COV 2024: | 45473 | 45443 | Completed On-time |
LO | MH | forbesedna | COV 2024: | 45473 | 45443 | Completed On-time |
LO | MH | fougereatiti florette | COV 2024: | 45473 | 45463 | Completed On-time |
LO | MH | francoismidlyne | COV 2024: | 45473 | 45454 | Completed On-time |
LO | MH | francoismidlyne | COV 2024: | 45473 | 45454 | Completed On-time |
LO | MH | frederiquefrancoise | COV 2024: | 45473 | 45442 | Completed On-time |
LO | MH | geneceelza | COV 2024: | 45473 | 45443 | Completed On-time |
LO | MH | georgemonica ivonne | COV 2024: | 45473 | 45441 | Completed On-time |
LO | MH | georgemonica ivonne | COV 2024: | 45473 | 45447 | Completed On-time |
LO | MH | gerardmarlene | COV 2024: | 45473 | 45463 | Completed On-time |
LO | MH | gerardmarlene | COV 2024: | 45473 | 45463 | Completed On-time |
LO | MH | gwanyallaeric | COV 2024: | 45473 | 45448 | Completed On-time |
LO | MH | hankathryn | COV 2024: | 45473 | 45453 | Completed On-time |
LO | MH | harcourtdaniel | COV 2024: | 45473 | 45447 | Completed On-time |
LO | MH | harkinsjanine | COV 2024: | 45473 | 45388 | Completed On-time |
LO | MH | hyppolitepascal | COV 2024: | 45473 | 45449 | Completed On-time |
LO | MH | idghaddourrabia | COV 2024: | 45473 | 45463 | Completed On-time |
LO | MH | isayasma cristina | COV 2024: | 45473 | 45446 | Completed On-time |
LO | MH | jaroszjustine | COV 2024: | 45473 | 45464 | Completed On-time |
LO | MH | jean jacquesmarie lucie | COV 2024: | 45473 | 45448 | Completed On-time |
LO | MH | jean mary noelmarie natacha | COV 2024: | 45473 | 45453 | Completed On-time |
LO | MH | jean pauljocelyne | COV 2024: | 45473 | 45447 | Completed On-time |
LO | MH | jean philippemimose | COV 2024: | 45473 | 45443 | Completed On-time |
LO | MH | jean-baptistemarie helen | COV 2024: | 45473 | 45443 | Completed On-time |
LO | MH | josephjenny | COV 2024: | 45414 | 45447 | Completed Late |
LO | MH | juntongdarasynth | COV 2024: | 45473 | 45443 | Completed On-time |
LO | MH | juntongquincy | COV 2024: | 45473 | 45434 | Completed On-time |
LO | MH | kiharadamaris | COV 2024: | 45473 | Past Due | |
LO | MH | kiharadamaris w | COV 2024: | 45491 | Not Yet Due | |
LO | MH | kisituhenry j | COV 2024: | 45500 | Not Yet Due | |
LO | MH | kizitogeorge | COV 2024: | 45473 | 45446 | Completed On-time |
LO | MH | kizzajoyce | COV 2024: | 45473 | 45457 | Completed On-time |
LO | MH | kpakimasiah | COV 2024: | 45473 | 45446 | Completed On-time |
LO | MH | kuteesafahad | COV 2024: | 45473 | 45456 | Completed On-time |
LO | MH | lamiserejosette marie | COV 2024: | 45473 | 45449 | Completed On-time |
LO | MH | larosasteven | COV 2024: | 45473 | 45447 | Completed On-time |
LO | MH | lodz numeromarie | COV 2024: | 45473 | 45446 | Completed On-time |
LO | MH | lopezsebastian | COV 2024: | 45473 | 45453 | Completed On-time |
LO | MH | louidorlouisina | COV 2024: | 45473 | 45447 | Completed On-time |
LO | MH | marshalltracy | COV 2024: | 45473 | 45426 | Completed On-time |
LO | MH | massontara | COV 2024: | 45473 | Past Due | |
LO | MH | mayanjafarid | COV 2024: | 45473 | 45450 | Completed On-time |
LO | MH | mccluskeysuzanne | COV 2024: | 45473 | 45451 | Completed On-time |
LO | MH | menardmireille | COV 2024: | 45473 | 45462 | Completed On-time |
LO | MH | minkoffeve | COV 2024: | 45473 | Past Due | |
LO | MH | mukiibizabiib mariam | COV 2024: | 45473 | 45449 | Completed On-time |
LO | MH | nabatanzirose mukiibi | COV 2024: | 45473 | 45443 | Completed On-time |
LO | MH | nakiguddeannita | COV 2024: | 45428 | 45421 | Completed On-time |
LO | MH | nalumansiharriet | COV 2024: | 45437 | 45433 | Completed On-time |
LO | MH | nampiingamaureen | COV 2024: | 45473 | 45468 | Completed On-time |
LO | MH | nanyombijustine | COV 2024: | 45473 | 45447 | Completed On-time |
LO | MH | nazairemagalie | COV 2024: | 45473 | 45453 | Completed On-time |
LO | MH | ndimudamaris | COV 2024: | 45473 | Past Due | |
LO | MH | occilwilkins | COV 2024: | 45473 | 45453 | Completed On-time |
LO | MH | o'keefejames | COV 2024: | 45473 | 45470 | Completed On-time |
LO | MH | orificepatricia | COV 2024: | 45473 | 45464 | Completed On-time |
LO | MH | padillaria joy p | COV 2024: | 45500 | 45476 | Completed On-time |
LO | MH | picardirobert | COV 2024: | 45473 | 45470 | Completed On-time |
LO | MH | pomponiolorraine | COV 2024: | 45473 | 45395 | Completed On-time |
LO | MH | provincegamal abdel | COV 2024: | 45473 | 45464 | Completed On-time |
LO | MH | robinsonjosephine | COV 2024: | 45473 | 45448 | Completed On-time |
LO | MH | rodriguezleonicia | COV 2024: | 45473 | 45456 | Completed On-time |
LO | MH | rurengoisaac | COV 2024: | 45473 | Past Due | |
LO | MH | ruzarobrian | COV 2024: | 45473 | 45463 | Completed On-time |
LO | MH | ruzarobrian | COV 2024: | 45473 | 45463 | Completed On-time |
LO | MH | sanyusylvia | COV 2024: | 45473 | 45447 | Completed On-time |
LO | MH | sememarie p | COV 2024: | 45473 | 45446 | Completed On-time |
LO | MH | sesayzainab v | COV 2024: | 45473 | 45463 | Completed On-time |
LO | MH | smithhilary | COV 2024: | 45473 | 45456 | Completed On-time |
LO | MH | ssimbwairene milly | COV 2024: | 45473 | 45455 | Completed On-time |
LO | MH | stanfieldtiffany | COV 2024: | 45473 | Past Due | |
LO | MH | taddeoanthony | COV 2024: | 45473 | 45434 | Completed On-time |
LO | MH | texierjude davens | COV 2024: | 45473 | 45441 | Completed On-time |
LO | MH | texierjude davens | COV 2024: | 45473 | 45453 | Completed On-time |
LO | MH | tracyjames m | COV 2024: | 45473 | 45460 | Completed On-time |
LO | MH | vegamarianela | COV 2024: | 45473 | Past Due | |
LO | MH | villaverdefrancis arvin d | COV 2024: | 45449 | 45420 | Completed On-time |
LO | MH | walkerdana | COV 2024: | 45473 | Past Due | |
LO | MH | williamsjosephine lubowa | COV 2024: | 45473 | 45473 | Completed On-time |
LO | MH | yellamatyshirly marina | COV 2024: | 45473 | 45446 | Completed On-time |
LO | MH | yesseniakery | COV 2024: | 45473 | Past Due |
from above table I must calculate the % of Assignment Status by Org and by region
so, from above sample there are 119 total assignments.
% of Assignment Status by Org will be as below
Org | Assignment Status | count of Assignments | % of total |
LO | Completed Late | 5 | 4.2% |
Completed On-time | 96 | 80.7% | |
Exemption | 1 | 0.8% | |
Not Yet Due | 6 | 5.0% | |
Past Due | 11 | 9.2% | |
Total | 119 | 100% |
% of Assignment Status by region will be as below
Region | Assignment Status | count of Assignments | % of total |
MH | Completed Late | 5 | 4.2% |
Completed On-time | 96 | 80.7% | |
Exemption | 1 | 0.8% | |
Not Yet Due | 6 | 5.0% | |
Past Due | 11 | 9.2% | |
Total | 119 | 100% |
Solved! Go to Solution.
Try creating calculated tables for both Org and Region
AssignmentStatusByOrg =
SUMMARIZE(
'YourTable',
'YourTable'[Org],
'YourTable'[Assignment Status],
"count of Assignments", COUNT('YourTable'[Assignment Status]),
"% of total",
DIVIDE(
COUNT('YourTable'[Assignment Status]),
CALCULATE(COUNT('YourTable'[Assignment Status]), ALL('YourTable'))
) * 100
)
AssignmentStatusByRegion =
SUMMARIZE(
'YourTable',
'YourTable'[Region],
'YourTable'[Assignment Status],
"count of Assignments", COUNT('YourTable'[Assignment Status]),
"% of total",
DIVIDE(
COUNT('YourTable'[Assignment Status]),
CALCULATE(COUNT('YourTable'[Assignment Status]), ALL('YourTable'))
) * 100
)
Step 0: I use your DATA below.
Step 1: I make 2 matrixs below.
Try creating calculated tables for both Org and Region
AssignmentStatusByOrg =
SUMMARIZE(
'YourTable',
'YourTable'[Org],
'YourTable'[Assignment Status],
"count of Assignments", COUNT('YourTable'[Assignment Status]),
"% of total",
DIVIDE(
COUNT('YourTable'[Assignment Status]),
CALCULATE(COUNT('YourTable'[Assignment Status]), ALL('YourTable'))
) * 100
)
AssignmentStatusByRegion =
SUMMARIZE(
'YourTable',
'YourTable'[Region],
'YourTable'[Assignment Status],
"count of Assignments", COUNT('YourTable'[Assignment Status]),
"% of total",
DIVIDE(
COUNT('YourTable'[Assignment Status]),
CALCULATE(COUNT('YourTable'[Assignment Status]), ALL('YourTable'))
) * 100
)
User | Count |
---|---|
25 | |
12 | |
8 | |
6 | |
6 |
User | Count |
---|---|
26 | |
12 | |
12 | |
10 | |
6 |