Microsoft Fabric Community Conference 2025, March 31 - April 2, Las Vegas, Nevada. Use code FABINSIDER for a $400 discount.
Register nowGet inspired! Check out the entries from the Power BI DataViz World Championships preliminary rounds and give kudos to your favorites. View the vizzies.
Hello all,
I am working with a data set that contains the month in which the customers subscribed for services, and their monthly payment subsequently.
The goal is to try and determine the number of customers that dropped off or who didn't make payments on a subsequent basis. I have been able to determine the count of customers on a monthly basis who dropped off.
The data looks like this. I have put it in excel to simplify things
Monthly Payments | |||||||||||||||||
Month subscribed | Jan-21 | Feb-21 | Mar-21 | Apr-21 | May-21 | Jun-21 | Jul-21 | Aug-21 | Sep-21 | Oct-21 | Nov-21 | Dec-21 | Jan-22 | Feb-22 | Mar-22 | Apr-22 | |
Jan-21 | 900 | 867 | 834 | 801 | 768 | 735 | 702 | 669 | 636 | 603 | 570 | 537 | 504 | 471 | 438 | ||
Feb-21 | 800 | 767 | 734 | 701 | 668 | 635 | 602 | 569 | 536 | 503 | 470 | 437 | 404 | 371 | |||
Mar-21 | 940 | 907 | 874 | 841 | 808 | 775 | 742 | 709 | 676 | 643 | 610 | 577 | 544 | ||||
Apr-21 | 939 | 906 | 873 | 840 | 807 | 774 | 741 | 708 | 675 | 642 | 609 | 576 | |||||
May-21 | 310 | 277 | 244 | 211 | 178 | 145 | 112 | 79 | 46 | 13 | 0 | ||||||
Jun-21 | 893 | 860 | 827 | 794 | 761 | 728 | 695 | 662 | 629 | 596 | |||||||
Jul-21 | 493 | 460 | 427 | 394 | 361 | 328 | 295 | 262 | 229 | ||||||||
Aug-21 | 920 | 887 | 854 | 821 | 788 | 755 | 722 | 689 | |||||||||
Sep-21 | 120 | 87 | 54 | 21 | 0 | 0 | 0 | ||||||||||
Oct-21 | 222 | 189 | 156 | 123 | 90 | 57 | |||||||||||
Nov-21 | 294 | 261 | 228 | 195 | 162 | ||||||||||||
Dec-21 | 748 | 715 | 682 | 649 |
What I am trying to get at is to normalize the monthly progression of monthly payments relative to the subscription month to look like this;
Monthly Payments | |||||||||||||||||
Month subscribed | Month 1 | Month 2 | Month 3 | Month 4 | Month 5 | Month 6 | Month 7 | Month 8 | Month 9 | Month 10 | Month 11 | Month 12 | Month 13 | Month 14 | Month 15 | Month 16 | |
Jan-21 | 900 | 867 | 834 | 801 | 768 | 735 | 702 | 669 | 636 | 603 | 570 | 537 | 504 | 471 | 438 | ||
Feb-21 | 800 | 767 | 734 | 701 | 668 | 635 | 602 | 569 | 536 | 503 | 470 | 437 | 404 | 371 | |||
Mar-21 | 940 | 907 | 874 | 841 | 808 | 775 | 742 | 709 | 676 | 643 | 610 | 577 | 544 | ||||
Apr-21 | 939 | 906 | 873 | 840 | 807 | 774 | 741 | 708 | 675 | 642 | 609 | 576 | |||||
May-21 | 310 | 277 | 244 | 211 | 178 | 145 | 112 | 79 | 46 | 13 | 0 | ||||||
Jun-21 | 893 | 860 | 827 | 794 | 761 | 728 | 695 | 662 | 629 | 596 | |||||||
Jul-21 | 493 | 460 | 427 | 394 | 361 | 328 | 295 | 262 | 229 | ||||||||
Aug-21 | 920 | 887 | 854 | 821 | 788 | 755 | 722 | 689 | |||||||||
Sep-21 | 120 | 87 | 54 | 21 | 0 | 0 | 0 | ||||||||||
Oct-21 | 222 | 189 | 156 | 123 | 90 | 57 | |||||||||||
Nov-21 | 294 | 261 | 228 | 195 | 162 | ||||||||||||
Dec-21 | 748 | 715 | 682 | 649 |
Please bear in mind that to normalize this, I have to write a DAX to recognize the subscription month as "Month 1" and the subsequent months as "Month 2, Month 3, ..."
Please help with this @amitchandak @v-yiruan-msft @tamerj1
Solved! Go to Solution.
@Dataholic , Seems like this one to me
Customer Retention Part 3: Period Of Stay – Cohort Analysis: https://community.powerbi.com/t5/Community-Blog/Customer-Retention-Part-3-Period-Of-Stay-Cohort-Anal...
I was actually on my way to solving the months labelling. This solves it perfectly.
Thank you
@Dataholic , Seems like this one to me
Customer Retention Part 3: Period Of Stay – Cohort Analysis: https://community.powerbi.com/t5/Community-Blog/Customer-Retention-Part-3-Period-Of-Stay-Cohort-Anal...
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code FABINSIDER for a $400 discount!
Check out the February 2025 Power BI update to learn about new features.
User | Count |
---|---|
21 | |
15 | |
11 | |
11 | |
10 |