March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount! Early bird discount ends December 31.
Register NowBe one of the first to start using Fabric Databases. View on-demand sessions with database experts and the Microsoft product team to learn just how easy it is to get started. Watch now
I have categorized my clients into 4 LRFM segments: Key, Frequent, Spender & Uncertain. Using measure.
Client | Status |
A | Key |
B | Uncertain |
C | Uncertain |
D | Frequent |
E | Key |
F | Key |
G | Frequent |
H | Key |
I | Spender |
J | Spender |
K | Frequent |
L | Uncertain |
I want a summarization table that shows something like this.
Status | # Clients |
Key | 4 |
Uncertain | 3 |
Frequent | 3 |
Spender | 2 |
Notice that my output in the first table is measure. But we can’t use measure as a legend. I don’t want to use columns because I want it to be dynamic and the summarization values change based on the slicers I have.
What should I do?
My lrfm measure:
LRFM Analysis LRFM =
IF([If Normalize L LRFM]="High" && [If Normalize F LRFM]="High" && [If Normalize M LRFM]="High" && [If Normalize R LRFM]="High","Key",
IF([If Normalize L LRFM]="Low" && [If Normalize F LRFM]="High" && [If Normalize M LRFM]="High" && [If Normalize R LRFM]="High","Key",
IF([If Normalize L LRFM]="High" && [If Normalize F LRFM]="High" && [If Normalize M LRFM]="High" && [If Normalize R LRFM]="Low","Key",
IF([If Normalize L LRFM]="Low" && [If Normalize F LRFM]="High" && [If Normalize M LRFM]="High" && [If Normalize R LRFM]="Low","Key",
IF([If Normalize L LRFM]="High" && [If Normalize F LRFM]="Low" && [If Normalize M LRFM]="High" && [If Normalize R LRFM]="High","Spender",
IF([If Normalize L LRFM]="Low" && [If Normalize F LRFM]="Low" && [If Normalize M LRFM]="High" && [If Normalize R LRFM]="High","Spender",
IF([If Normalize L LRFM]="High" && [If Normalize F LRFM]="Low" && [If Normalize M LRFM]="High" && [If Normalize R LRFM]="Low","Spender",
IF([If Normalize L LRFM]="Low" && [If Normalize F LRFM]="Low" && [If Normalize M LRFM]="High" && [If Normalize R LRFM]="Low","Spender",
IF([If Normalize L LRFM]="High" && [If Normalize F LRFM]="High" && [If Normalize M LRFM]="Low" && [If Normalize R LRFM]="High","Frequent",
IF([If Normalize L LRFM]="Low" && [If Normalize F LRFM]="High" && [If Normalize M LRFM]="Low" && [If Normalize R LRFM]="High","Frequent",
IF([If Normalize L LRFM]="High" && [If Normalize F LRFM]="High" && [If Normalize M LRFM]="Low" && [If Normalize R LRFM]="Low","Frequent",
IF([If Normalize L LRFM]="Low" && [If Normalize F LRFM]="High" && [If Normalize M LRFM]="Low" && [If Normalize R LRFM]="Low","Frequent",
IF([If Normalize L LRFM]="High" && [If Normalize F LRFM]="Low" && [If Normalize M LRFM]="Low" && [If Normalize R LRFM]="High","Uncertain",
IF([If Normalize L LRFM]="Low" && [If Normalize F LRFM]="Low" && [If Normalize M LRFM]="Low" && [If Normalize R LRFM]="High","Uncertain",
IF([If Normalize L LRFM]="High" && [If Normalize F LRFM]="Low" && [If Normalize M LRFM]="Low" && [If Normalize R LRFM]="Low","Uncertain",
IF([If Normalize L LRFM]="Low" && [If Normalize F LRFM]="Low" && [If Normalize M LRFM]="Low" && [If Normalize R LRFM]="Low","Uncertain","Not Found"))))))))))))))))
Solved! Go to Solution.
Hi @HeevaCh ,
You can try this solution.
Step 1: Use the following table expression to create an auxiliary table of customer categories to be used as row label fields.
CustomerCategory =
DATATABLE (
"Category",STRING,
"Index",INTEGER,
{
{"Key",1},
{"Uncertain",2},
{"Frequent",3},
{"Spender",4}
}
)
Step 2: Create a measure named # Clients.
# Clients =
VAR TempTable =
ADDCOLUMNS ( ALL ( 'Client'[Client] ), "Status", [LRFM Analysis LRFM] )
RETURN
SUMX (
VALUES ( 'CustomerCategory'[Category] ),
COUNTROWS ( FILTER ( TempTable, [Status] = 'CustomerCategory'[Category] ) )
)
Step 3: Use the category field of the CustomerCategory table created earlier as the matrix row label and the # Clients measure as the value field of the matrix. Then you can get the results you want.
Did I answer your question? If yes, pls mark my post as a solution and appreciate your Kudos !
Thank you~
I edited the code a little bit, In case any user using this code:
# Clients =
VAR TempTable =
ADDCOLUMNS ( ALL ( 'VBI_JobProgressReport'[Client closed] ), "Status", [LRFM Analysis LRFM] )
RETURN
sumx(
VALUES ( 'CustomerCategory'[Category] ),
CALCULATE(DISTINCTCOUNT(VBI_JobProgressReport[Client Closed]),FILTER ( TempTable, [Status] = 'CustomerCategory'[Category] ) )
)
I used distinct count becuase I wanted to count my clients and in my dataset I had multiple rows with the same client.
Hi @HeevaCh ,
You can try this solution.
Step 1: Use the following table expression to create an auxiliary table of customer categories to be used as row label fields.
CustomerCategory =
DATATABLE (
"Category",STRING,
"Index",INTEGER,
{
{"Key",1},
{"Uncertain",2},
{"Frequent",3},
{"Spender",4}
}
)
Step 2: Create a measure named # Clients.
# Clients =
VAR TempTable =
ADDCOLUMNS ( ALL ( 'Client'[Client] ), "Status", [LRFM Analysis LRFM] )
RETURN
SUMX (
VALUES ( 'CustomerCategory'[Category] ),
COUNTROWS ( FILTER ( TempTable, [Status] = 'CustomerCategory'[Category] ) )
)
Step 3: Use the category field of the CustomerCategory table created earlier as the matrix row label and the # Clients measure as the value field of the matrix. Then you can get the results you want.
Did I answer your question? If yes, pls mark my post as a solution and appreciate your Kudos !
Thank you~
Thanks!
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount!
Arun Ulag shares exciting details about the Microsoft Fabric Conference 2025, which will be held in Las Vegas, NV.
User | Count |
---|---|
21 | |
14 | |
11 | |
8 | |
5 |
User | Count |
---|---|
26 | |
21 | |
20 | |
14 | |
10 |