The ultimate Fabric, Power BI, SQL, and AI community-led learning event. Save €200 with code FABCOMM.
Get registeredEnhance your career with this limited time 50% discount on Fabric and Power BI exams. Ends August 31st. Request your voucher.
Hello Experts,
Could you please support me? I can not solve it in PowerBi.
I have a table with demands below. The columns are the months(with format date), de rows is the days when we needed to check the demands. We do not have rule for the dates of days, for example: every second day...etc., if we would like to see, we refresh it.
Days | 2025.May | 2025.June | 2025.July | 2025.August | 2025.September |
2025.05.28 | 5 000 | 5 000 | 10 000 | 13 000 | 15 000 |
2025.05.26 | 10 000 | 13 000 | 5 000 | 6 000 | 5 000 |
2025.05.23 | 15 000 | 6 000 | 15 000 | 7 000 | 13 000 |
2025.05.19 | 13 000 | 7 000 | 13 000 | 8 000 | 6 000 |
2025.05.18 | 6 000 | 8 000 | 6 000 | 4 000 | 7 000 |
2025.05.16 | 7 000 | 4 000 | 7 000 | 5 000 | 8 000 |
2025.05.10 | 8 000 | 5 000 | 8 000 | 15 000 | 4 000 |
2025.05.09 | 4 000 | 15 000 | 4 000 | 10 000 | 10 000 |
I would like to see in the cells only the changes between the two days in the new other table or matrix. What is it mean:
How can i solve it? I could not find any solution.
Thank you in advance!
Solved! Go to Solution.
Hi @Someone22 ,
To calculate the change in demand between consecutive days for each month in Power BI, you need to reshape your data first using Power Query. Start by unpivoting all the month columns (like 2025.May, 2025.June, etc.) so they become values in a single column instead of being separate headers. This transforms your table into a long format with columns for the Date, Month, and Demand.
Once loaded into Power BI in this format, you can create a DAX measure that calculates the difference in demand between the current row and the previous date for the same month. Here's the DAX measure you can use:
Demand Change =
VAR CurrentDate = MAX('YourTable'[Date])
VAR CurrentMonth = SELECTEDVALUE('YourTable'[Month])
VAR CurrentDemand = MAX('YourTable'[Demand])
VAR PrevDate =
CALCULATE(
MAX('YourTable'[Date]),
FILTER(
ALL('YourTable'),
'YourTable'[Date] < CurrentDate &&
'YourTable'[Month] = CurrentMonth
)
)
VAR PrevDemand =
CALCULATE(
MAX('YourTable'[Demand]),
'YourTable'[Date] = PrevDate &&
'YourTable'[Month] = CurrentMonth
)
RETURN
IF(ISBLANK(PrevDemand), BLANK(), CurrentDemand - PrevDemand)
Replace 'YourTable' with the name of your actual table. This measure compares each date’s demand to the demand from the previous date for the same month and returns the difference. Then, place Date in the rows, Month in the columns, and this measure as the value in a Matrix visual. This will give you exactly what your Excel mock-up shows—highlighting daily changes across months. You can then apply conditional formatting to match your Excel color coding.
Best regards,
Hello @DataNinja777 ,
Based on your DAX, i start to thinking about the operation of it. After some hours i found the right changes and now it is working :D. I changed 2 MAX to SUM and it is perfect(RED highlight).
Thank you again for your support! 🙂
Hi @Someone22,
Thank you for reaching out to Microsoft Fabric Community.
Based on your description, please follow below steps:
This matrix will now show the demand changes compared to the previous snapshot date for each month.
If this post helps, then please consider Accepting as solution to help the other members find it more quickly, don't forget to give a "Kudos" – I’d truly appreciate it!
Thanks and regards,
Anjan Kumar Chippa
Hello @v-achippa ,
I tried it, but the database is too big and the index step kill the query :(. I can not finish the step because the query freeze.
Hi @Someone22,
Thank you for the response, when working with large datasets the Index and Merge method can be slow or even freeze the power query. So please follow this below performance optimized approach:
This approach avoids heavy index operations and performs better on large datasets and It will show the change in demand between the current snapshot and the previous one for each month.
If this post helps, then please consider Accepting as solution to help the other members find it more quickly, don't forget to give a "Kudos" – I’d truly appreciate it!
Thanks and regards,
Anjan Kumar Chippa
Hello @v-achippa ,
Unfortunately it is not working, the query can not handle the merge :(. After 1 hour thinking the query freeze.
Like i mentoned to DataNinja,
i think i missed something really important. Sorry for that. The database in power query, it is not the same what i sent in my first post. The table in my first post is the summary table about raw table from query and i think this is the problem why the dax can not show what i want because in the same Day and Month rows there are more different demands.
So, for an example review my raw database in power query after unpivot the months columns:
Raw database in power query:
Days | Material | Type | City | Months | Demand |
2025.05.30 | A | X | Big | 2025. May | 500 |
2025.05.30 | B | X | Small | 2025. May | 700 |
2025.05.30 | C | X | Medium | 2025. May | 300 |
2025.05.30 | A | Y | Big | 2025. May | 500 |
2025.05.30 | B | Y | Small | 2025. May | 600 |
2025.05.30 | C | Y | Medium | 2025. May | 900 |
2025.05.30 | A | X | Big | 2025.June | 1100 |
2025.05.30 | B | X | Small | 2025.June | 1500 |
2025.05.30 | C | X | Medium | 2025.June | 400 |
2025.05.30 | A | Y | Big | 2025.June | 700 |
2025.05.30 | B | Y | Small | 2025.June | 320 |
2025.05.30 | C | Y | Medium | 2025.June | 675 |
2025.05.30 | A | X | Big | 2025.July | 456 |
2025.05.30 | B | X | Small | 2025.July | 234 |
2025.05.30 | C | X | Medium | 2025.July | 953 |
2025.05.30 | A | Y | Big | 2025.July | 1134 |
2025.05.30 | B | Y | Small | 2025.July | 1054 |
2025.05.30 | C | Y | Medium | 2025.July | 454 |
2025.05.30 | A | X | Big | 2025.August | 245 |
2025.05.30 | B | X | Small | 2025.August | 1034 |
2025.05.30 | C | X | Medium | 2025.August | 103 |
2025.05.30 | A | Y | Big | 2025.August | 567 |
2025.05.30 | B | Y | Small | 2025.August | 345 |
2025.05.30 | C | Y | Medium | 2025.August | 876 |
2025.05.30 | A | X | Big | 2025.September | 1256 |
2025.05.30 | B | X | Small | 2025.September | 2210 |
2025.05.30 | C | X | Medium | 2025.September | 222 |
2025.05.30 | A | Y | Big | 2025.September | 621 |
2025.05.30 | B | Y | Small | 2025.September | 453 |
2025.05.30 | C | Y | Medium | 2025.September | 389 |
2025.05.28 | A | X | Big | 2025. May | 550 |
2025.05.28 | B | X | Small | 2025. May | 750 |
2025.05.28 | C | X | Medium | 2025. May | 350 |
2025.05.28 | A | Y | Big | 2025. May | 550 |
2025.05.28 | B | Y | Small | 2025. May | 650 |
2025.05.28 | C | Y | Medium | 2025. May | 950 |
2025.05.28 | A | X | Big | 2025.June | 1150 |
2025.05.28 | B | X | Small | 2025.June | 1550 |
2025.05.28 | C | X | Medium | 2025.June | 450 |
2025.05.28 | A | Y | Big | 2025.June | 750 |
2025.05.28 | B | Y | Small | 2025.June | 370 |
2025.05.28 | C | Y | Medium | 2025.June | 725 |
2025.05.28 | A | X | Big | 2025.July | 506 |
2025.05.28 | B | X | Small | 2025.July | 284 |
2025.05.28 | C | X | Medium | 2025.July | 1003 |
2025.05.28 | A | Y | Big | 2025.July | 1184 |
2025.05.28 | B | Y | Small | 2025.July | 1104 |
2025.05.28 | C | Y | Medium | 2025.July | 504 |
2025.05.28 | A | X | Big | 2025.August | 295 |
2025.05.28 | B | X | Small | 2025.August | 1084 |
2025.05.28 | C | X | Medium | 2025.August | 153 |
2025.05.28 | A | Y | Big | 2025.August | 617 |
2025.05.28 | B | Y | Small | 2025.August | 395 |
2025.05.28 | C | Y | Medium | 2025.August | 926 |
2025.05.28 | A | X | Big | 2025.September | 1306 |
2025.05.28 | B | X | Small | 2025.September | 2260 |
2025.05.28 | C | X | Medium | 2025.September | 272 |
2025.05.28 | A | Y | Big | 2025.September | 671 |
2025.05.28 | B | Y | Small | 2025.September | 503 |
2025.05.28 | C | Y | Medium | 2025.September | 439 |
2025.05.27 | A | X | Big | 2025. May | 450 |
2025.05.27 | B | X | Small | 2025. May | 650 |
2025.05.27 | C | X | Medium | 2025. May | 250 |
2025.05.27 | A | Y | Big | 2025. May | 450 |
2025.05.27 | B | Y | Small | 2025. May | 550 |
2025.05.27 | C | Y | Medium | 2025. May | 850 |
2025.05.27 | A | X | Big | 2025.June | 1050 |
2025.05.27 | B | X | Small | 2025.June | 1450 |
2025.05.27 | C | X | Medium | 2025.June | 350 |
2025.05.27 | A | Y | Big | 2025.June | 650 |
2025.05.27 | B | Y | Small | 2025.June | 270 |
2025.05.27 | C | Y | Medium | 2025.June | 625 |
2025.05.27 | A | X | Big | 2025.July | 406 |
2025.05.27 | B | X | Small | 2025.July | 184 |
2025.05.27 | C | X | Medium | 2025.July | 903 |
2025.05.27 | A | Y | Big | 2025.July | 1084 |
2025.05.27 | B | Y | Small | 2025.July | 1004 |
2025.05.27 | C | Y | Medium | 2025.July | 404 |
2025.05.27 | A | X | Big | 2025.August | 195 |
2025.05.27 | B | X | Small | 2025.August | 984 |
2025.05.27 | C | X | Medium | 2025.August | 53 |
2025.05.27 | A | Y | Big | 2025.August | 517 |
2025.05.27 | B | Y | Small | 2025.August | 295 |
2025.05.27 | C | Y | Medium | 2025.August | 826 |
2025.05.27 | A | X | Big | 2025.September | 1206 |
2025.05.27 | B | X | Small | 2025.September | 2160 |
2025.05.27 | C | X | Medium | 2025.September | 172 |
2025.05.27 | A | Y | Big | 2025.September | 571 |
2025.05.27 | B | Y | Small | 2025.September | 403 |
2025.05.27 | C | Y | Medium | 2025.September | 339 |
2025.05.15 | A | X | Big | 2025. May | 600 |
2025.05.15 | B | X | Small | 2025. May | 800 |
2025.05.15 | C | X | Medium | 2025. May | 400 |
2025.05.15 | A | Y | Big | 2025. May | 600 |
2025.05.15 | B | Y | Small | 2025. May | 700 |
2025.05.15 | C | Y | Medium | 2025. May | 1000 |
2025.05.15 | A | X | Big | 2025.June | 1200 |
2025.05.15 | B | X | Small | 2025.June | 1600 |
2025.05.15 | C | X | Medium | 2025.June | 500 |
2025.05.15 | A | Y | Big | 2025.June | 800 |
2025.05.15 | B | Y | Small | 2025.June | 420 |
2025.05.15 | C | Y | Medium | 2025.June | 775 |
2025.05.15 | A | X | Big | 2025.July | 556 |
2025.05.15 | B | X | Small | 2025.July | 334 |
2025.05.15 | C | X | Medium | 2025.July | 1053 |
2025.05.15 | A | Y | Big | 2025.July | 1234 |
2025.05.15 | B | Y | Small | 2025.July | 1154 |
2025.05.15 | C | Y | Medium | 2025.July | 554 |
2025.05.15 | A | X | Big | 2025.August | 345 |
2025.05.15 | B | X | Small | 2025.August | 1134 |
2025.05.15 | C | X | Medium | 2025.August | 203 |
2025.05.15 | A | Y | Big | 2025.August | 667 |
2025.05.15 | B | Y | Small | 2025.August | 445 |
2025.05.15 | C | Y | Medium | 2025.August | 976 |
2025.05.15 | A | X | Big | 2025.September | 1356 |
2025.05.15 | B | X | Small | 2025.September | 2310 |
2025.05.15 | C | X | Medium | 2025.September | 322 |
2025.05.15 | A | Y | Big | 2025.September | 721 |
2025.05.15 | B | Y | Small | 2025.September | 553 |
2025.05.15 | C | Y | Medium | 2025.September | 489 |
2025.05.05 | A | X | Big | 2025. May | 350 |
2025.05.05 | B | X | Small | 2025. May | 550 |
2025.05.05 | C | X | Medium | 2025. May | 150 |
2025.05.05 | A | Y | Big | 2025. May | 350 |
2025.05.05 | B | Y | Small | 2025. May | 450 |
2025.05.05 | C | Y | Medium | 2025. May | 750 |
2025.05.05 | A | X | Big | 2025.June | 950 |
2025.05.05 | B | X | Small | 2025.June | 1350 |
2025.05.05 | C | X | Medium | 2025.June | 250 |
2025.05.05 | A | Y | Big | 2025.June | 550 |
2025.05.05 | B | Y | Small | 2025.June | 170 |
2025.05.05 | C | Y | Medium | 2025.June | 525 |
2025.05.05 | A | X | Big | 2025.July | 306 |
2025.05.05 | B | X | Small | 2025.July | 84 |
2025.05.05 | C | X | Medium | 2025.July | 803 |
2025.05.05 | A | Y | Big | 2025.July | 984 |
2025.05.05 | B | Y | Small | 2025.July | 904 |
2025.05.05 | C | Y | Medium | 2025.July | 304 |
2025.05.05 | A | X | Big | 2025.August | 95 |
2025.05.05 | B | X | Small | 2025.August | 884 |
2025.05.05 | C | X | Medium | 2025.August | 47 |
2025.05.05 | A | Y | Big | 2025.August | 417 |
2025.05.05 | B | Y | Small | 2025.August | 195 |
2025.05.05 | C | Y | Medium | 2025.August | 726 |
2025.05.05 | A | X | Big | 2025.September | 1106 |
2025.05.05 | B | X | Small | 2025.September | 2060 |
2025.05.05 | C | X | Medium | 2025.September | 72 |
2025.05.05 | A | Y | Big | 2025.September | 471 |
2025.05.05 | B | Y | Small | 2025.September | 303 |
2025.05.05 | C | Y | Medium | 2025.September | 239 |
2025.05.01 | A | X | Big | 2025. May | 0 |
2025.05.01 | B | X | Small | 2025. May | 0 |
2025.05.01 | C | X | Medium | 2025. May | 0 |
2025.05.01 | A | Y | Big | 2025. May | 0 |
2025.05.01 | B | Y | Small | 2025. May | 0 |
2025.05.01 | C | Y | Medium | 2025. May | 0 |
2025.05.01 | A | X | Big | 2025.June | 0 |
2025.05.01 | B | X | Small | 2025.June | 0 |
2025.05.01 | C | X | Medium | 2025.June | 0 |
2025.05.01 | A | Y | Big | 2025.June | 0 |
2025.05.01 | B | Y | Small | 2025.June | 0 |
2025.05.01 | C | Y | Medium | 2025.June | 0 |
2025.05.01 | A | X | Big | 2025.July | 0 |
2025.05.01 | B | X | Small | 2025.July | 0 |
2025.05.01 | C | X | Medium | 2025.July | 0 |
2025.05.01 | A | Y | Big | 2025.July | 0 |
2025.05.01 | B | Y | Small | 2025.July | 0 |
2025.05.01 | C | Y | Medium | 2025.July | 0 |
2025.05.01 | A | X | Big | 2025.August | 0 |
2025.05.01 | B | X | Small | 2025.August | 0 |
2025.05.01 | C | X | Medium | 2025.August | 0 |
2025.05.01 | A | Y | Big | 2025.August | 0 |
2025.05.01 | B | Y | Small | 2025.August | 0 |
2025.05.01 | C | Y | Medium | 2025.August | 0 |
2025.05.01 | A | X | Big | 2025.September | 0 |
2025.05.01 | B | X | Small | 2025.September | 0 |
2025.05.01 | C | X | Medium | 2025.September | 0 |
2025.05.01 | A | Y | Big | 2025.September | 0 |
2025.05.01 | B | Y | Small | 2025.September | 0 |
2025.05.01 | C | Y | Medium | 2025.September | 0 |
Summary and compare(what i want to see in PBI) matrix:
I am really sorry again :).
Thank you in advance!
Hi @Someone22 ,
To calculate the change in demand between consecutive days for each month in Power BI, you need to reshape your data first using Power Query. Start by unpivoting all the month columns (like 2025.May, 2025.June, etc.) so they become values in a single column instead of being separate headers. This transforms your table into a long format with columns for the Date, Month, and Demand.
Once loaded into Power BI in this format, you can create a DAX measure that calculates the difference in demand between the current row and the previous date for the same month. Here's the DAX measure you can use:
Demand Change =
VAR CurrentDate = MAX('YourTable'[Date])
VAR CurrentMonth = SELECTEDVALUE('YourTable'[Month])
VAR CurrentDemand = MAX('YourTable'[Demand])
VAR PrevDate =
CALCULATE(
MAX('YourTable'[Date]),
FILTER(
ALL('YourTable'),
'YourTable'[Date] < CurrentDate &&
'YourTable'[Month] = CurrentMonth
)
)
VAR PrevDemand =
CALCULATE(
MAX('YourTable'[Demand]),
'YourTable'[Date] = PrevDate &&
'YourTable'[Month] = CurrentMonth
)
RETURN
IF(ISBLANK(PrevDemand), BLANK(), CurrentDemand - PrevDemand)
Replace 'YourTable' with the name of your actual table. This measure compares each date’s demand to the demand from the previous date for the same month and returns the difference. Then, place Date in the rows, Month in the columns, and this measure as the value in a Matrix visual. This will give you exactly what your Excel mock-up shows—highlighting daily changes across months. You can then apply conditional formatting to match your Excel color coding.
Best regards,
Hello @DataNinja777 ,
Based on your DAX, i start to thinking about the operation of it. After some hours i found the right changes and now it is working :D. I changed 2 MAX to SUM and it is perfect(RED highlight).
Thank you again for your support! 🙂
Hello @DataNinja777 ,
I am new in PBI and i think i missed something really important. Sorry for that. The database in power query, it is not the same what i sent in my first post. The table in my first post is the summary table about raw table from query and i think this is the problem why the dax can not show what i want because in the same Day and Month rows there are more different demands.
So, for an example review my raw database in power query after unpivot the months columns:
Raw database in power query:
Days | Material | Type | City | Months | Demand |
2025.05.30 | A | X | Big | 2025. May | 500 |
2025.05.30 | B | X | Small | 2025. May | 700 |
2025.05.30 | C | X | Medium | 2025. May | 300 |
2025.05.30 | A | Y | Big | 2025. May | 500 |
2025.05.30 | B | Y | Small | 2025. May | 600 |
2025.05.30 | C | Y | Medium | 2025. May | 900 |
2025.05.30 | A | X | Big | 2025.June | 1100 |
2025.05.30 | B | X | Small | 2025.June | 1500 |
2025.05.30 | C | X | Medium | 2025.June | 400 |
2025.05.30 | A | Y | Big | 2025.June | 700 |
2025.05.30 | B | Y | Small | 2025.June | 320 |
2025.05.30 | C | Y | Medium | 2025.June | 675 |
2025.05.30 | A | X | Big | 2025.July | 456 |
2025.05.30 | B | X | Small | 2025.July | 234 |
2025.05.30 | C | X | Medium | 2025.July | 953 |
2025.05.30 | A | Y | Big | 2025.July | 1134 |
2025.05.30 | B | Y | Small | 2025.July | 1054 |
2025.05.30 | C | Y | Medium | 2025.July | 454 |
2025.05.30 | A | X | Big | 2025.August | 245 |
2025.05.30 | B | X | Small | 2025.August | 1034 |
2025.05.30 | C | X | Medium | 2025.August | 103 |
2025.05.30 | A | Y | Big | 2025.August | 567 |
2025.05.30 | B | Y | Small | 2025.August | 345 |
2025.05.30 | C | Y | Medium | 2025.August | 876 |
2025.05.30 | A | X | Big | 2025.September | 1256 |
2025.05.30 | B | X | Small | 2025.September | 2210 |
2025.05.30 | C | X | Medium | 2025.September | 222 |
2025.05.30 | A | Y | Big | 2025.September | 621 |
2025.05.30 | B | Y | Small | 2025.September | 453 |
2025.05.30 | C | Y | Medium | 2025.September | 389 |
2025.05.28 | A | X | Big | 2025. May | 550 |
2025.05.28 | B | X | Small | 2025. May | 750 |
2025.05.28 | C | X | Medium | 2025. May | 350 |
2025.05.28 | A | Y | Big | 2025. May | 550 |
2025.05.28 | B | Y | Small | 2025. May | 650 |
2025.05.28 | C | Y | Medium | 2025. May | 950 |
2025.05.28 | A | X | Big | 2025.June | 1150 |
2025.05.28 | B | X | Small | 2025.June | 1550 |
2025.05.28 | C | X | Medium | 2025.June | 450 |
2025.05.28 | A | Y | Big | 2025.June | 750 |
2025.05.28 | B | Y | Small | 2025.June | 370 |
2025.05.28 | C | Y | Medium | 2025.June | 725 |
2025.05.28 | A | X | Big | 2025.July | 506 |
2025.05.28 | B | X | Small | 2025.July | 284 |
2025.05.28 | C | X | Medium | 2025.July | 1003 |
2025.05.28 | A | Y | Big | 2025.July | 1184 |
2025.05.28 | B | Y | Small | 2025.July | 1104 |
2025.05.28 | C | Y | Medium | 2025.July | 504 |
2025.05.28 | A | X | Big | 2025.August | 295 |
2025.05.28 | B | X | Small | 2025.August | 1084 |
2025.05.28 | C | X | Medium | 2025.August | 153 |
2025.05.28 | A | Y | Big | 2025.August | 617 |
2025.05.28 | B | Y | Small | 2025.August | 395 |
2025.05.28 | C | Y | Medium | 2025.August | 926 |
2025.05.28 | A | X | Big | 2025.September | 1306 |
2025.05.28 | B | X | Small | 2025.September | 2260 |
2025.05.28 | C | X | Medium | 2025.September | 272 |
2025.05.28 | A | Y | Big | 2025.September | 671 |
2025.05.28 | B | Y | Small | 2025.September | 503 |
2025.05.28 | C | Y | Medium | 2025.September | 439 |
2025.05.27 | A | X | Big | 2025. May | 450 |
2025.05.27 | B | X | Small | 2025. May | 650 |
2025.05.27 | C | X | Medium | 2025. May | 250 |
2025.05.27 | A | Y | Big | 2025. May | 450 |
2025.05.27 | B | Y | Small | 2025. May | 550 |
2025.05.27 | C | Y | Medium | 2025. May | 850 |
2025.05.27 | A | X | Big | 2025.June | 1050 |
2025.05.27 | B | X | Small | 2025.June | 1450 |
2025.05.27 | C | X | Medium | 2025.June | 350 |
2025.05.27 | A | Y | Big | 2025.June | 650 |
2025.05.27 | B | Y | Small | 2025.June | 270 |
2025.05.27 | C | Y | Medium | 2025.June | 625 |
2025.05.27 | A | X | Big | 2025.July | 406 |
2025.05.27 | B | X | Small | 2025.July | 184 |
2025.05.27 | C | X | Medium | 2025.July | 903 |
2025.05.27 | A | Y | Big | 2025.July | 1084 |
2025.05.27 | B | Y | Small | 2025.July | 1004 |
2025.05.27 | C | Y | Medium | 2025.July | 404 |
2025.05.27 | A | X | Big | 2025.August | 195 |
2025.05.27 | B | X | Small | 2025.August | 984 |
2025.05.27 | C | X | Medium | 2025.August | 53 |
2025.05.27 | A | Y | Big | 2025.August | 517 |
2025.05.27 | B | Y | Small | 2025.August | 295 |
2025.05.27 | C | Y | Medium | 2025.August | 826 |
2025.05.27 | A | X | Big | 2025.September | 1206 |
2025.05.27 | B | X | Small | 2025.September | 2160 |
2025.05.27 | C | X | Medium | 2025.September | 172 |
2025.05.27 | A | Y | Big | 2025.September | 571 |
2025.05.27 | B | Y | Small | 2025.September | 403 |
2025.05.27 | C | Y | Medium | 2025.September | 339 |
2025.05.15 | A | X | Big | 2025. May | 600 |
2025.05.15 | B | X | Small | 2025. May | 800 |
2025.05.15 | C | X | Medium | 2025. May | 400 |
2025.05.15 | A | Y | Big | 2025. May | 600 |
2025.05.15 | B | Y | Small | 2025. May | 700 |
2025.05.15 | C | Y | Medium | 2025. May | 1000 |
2025.05.15 | A | X | Big | 2025.June | 1200 |
2025.05.15 | B | X | Small | 2025.June | 1600 |
2025.05.15 | C | X | Medium | 2025.June | 500 |
2025.05.15 | A | Y | Big | 2025.June | 800 |
2025.05.15 | B | Y | Small | 2025.June | 420 |
2025.05.15 | C | Y | Medium | 2025.June | 775 |
2025.05.15 | A | X | Big | 2025.July | 556 |
2025.05.15 | B | X | Small | 2025.July | 334 |
2025.05.15 | C | X | Medium | 2025.July | 1053 |
2025.05.15 | A | Y | Big | 2025.July | 1234 |
2025.05.15 | B | Y | Small | 2025.July | 1154 |
2025.05.15 | C | Y | Medium | 2025.July | 554 |
2025.05.15 | A | X | Big | 2025.August | 345 |
2025.05.15 | B | X | Small | 2025.August | 1134 |
2025.05.15 | C | X | Medium | 2025.August | 203 |
2025.05.15 | A | Y | Big | 2025.August | 667 |
2025.05.15 | B | Y | Small | 2025.August | 445 |
2025.05.15 | C | Y | Medium | 2025.August | 976 |
2025.05.15 | A | X | Big | 2025.September | 1356 |
2025.05.15 | B | X | Small | 2025.September | 2310 |
2025.05.15 | C | X | Medium | 2025.September | 322 |
2025.05.15 | A | Y | Big | 2025.September | 721 |
2025.05.15 | B | Y | Small | 2025.September | 553 |
2025.05.15 | C | Y | Medium | 2025.September | 489 |
2025.05.05 | A | X | Big | 2025. May | 350 |
2025.05.05 | B | X | Small | 2025. May | 550 |
2025.05.05 | C | X | Medium | 2025. May | 150 |
2025.05.05 | A | Y | Big | 2025. May | 350 |
2025.05.05 | B | Y | Small | 2025. May | 450 |
2025.05.05 | C | Y | Medium | 2025. May | 750 |
2025.05.05 | A | X | Big | 2025.June | 950 |
2025.05.05 | B | X | Small | 2025.June | 1350 |
2025.05.05 | C | X | Medium | 2025.June | 250 |
2025.05.05 | A | Y | Big | 2025.June | 550 |
2025.05.05 | B | Y | Small | 2025.June | 170 |
2025.05.05 | C | Y | Medium | 2025.June | 525 |
2025.05.05 | A | X | Big | 2025.July | 306 |
2025.05.05 | B | X | Small | 2025.July | 84 |
2025.05.05 | C | X | Medium | 2025.July | 803 |
2025.05.05 | A | Y | Big | 2025.July | 984 |
2025.05.05 | B | Y | Small | 2025.July | 904 |
2025.05.05 | C | Y | Medium | 2025.July | 304 |
2025.05.05 | A | X | Big | 2025.August | 95 |
2025.05.05 | B | X | Small | 2025.August | 884 |
2025.05.05 | C | X | Medium | 2025.August | 47 |
2025.05.05 | A | Y | Big | 2025.August | 417 |
2025.05.05 | B | Y | Small | 2025.August | 195 |
2025.05.05 | C | Y | Medium | 2025.August | 726 |
2025.05.05 | A | X | Big | 2025.September | 1106 |
2025.05.05 | B | X | Small | 2025.September | 2060 |
2025.05.05 | C | X | Medium | 2025.September | 72 |
2025.05.05 | A | Y | Big | 2025.September | 471 |
2025.05.05 | B | Y | Small | 2025.September | 303 |
2025.05.05 | C | Y | Medium | 2025.September | 239 |
2025.05.01 | A | X | Big | 2025. May | 0 |
2025.05.01 | B | X | Small | 2025. May | 0 |
2025.05.01 | C | X | Medium | 2025. May | 0 |
2025.05.01 | A | Y | Big | 2025. May | 0 |
2025.05.01 | B | Y | Small | 2025. May | 0 |
2025.05.01 | C | Y | Medium | 2025. May | 0 |
2025.05.01 | A | X | Big | 2025.June | 0 |
2025.05.01 | B | X | Small | 2025.June | 0 |
2025.05.01 | C | X | Medium | 2025.June | 0 |
2025.05.01 | A | Y | Big | 2025.June | 0 |
2025.05.01 | B | Y | Small | 2025.June | 0 |
2025.05.01 | C | Y | Medium | 2025.June | 0 |
2025.05.01 | A | X | Big | 2025.July | 0 |
2025.05.01 | B | X | Small | 2025.July | 0 |
2025.05.01 | C | X | Medium | 2025.July | 0 |
2025.05.01 | A | Y | Big | 2025.July | 0 |
2025.05.01 | B | Y | Small | 2025.July | 0 |
2025.05.01 | C | Y | Medium | 2025.July | 0 |
2025.05.01 | A | X | Big | 2025.August | 0 |
2025.05.01 | B | X | Small | 2025.August | 0 |
2025.05.01 | C | X | Medium | 2025.August | 0 |
2025.05.01 | A | Y | Big | 2025.August | 0 |
2025.05.01 | B | Y | Small | 2025.August | 0 |
2025.05.01 | C | Y | Medium | 2025.August | 0 |
2025.05.01 | A | X | Big | 2025.September | 0 |
2025.05.01 | B | X | Small | 2025.September | 0 |
2025.05.01 | C | X | Medium | 2025.September | 0 |
2025.05.01 | A | Y | Big | 2025.September | 0 |
2025.05.01 | B | Y | Small | 2025.September | 0 |
2025.05.01 | C | Y | Medium | 2025.September | 0 |
Summary and compare(what i want to see in PBI) matrix:
I am really sorry again :).
Thank you in advance!
Hello @DataNinja777 ,
I tried it, working, but it show wrong values. You see in below.
In the database there are other columns, not just Date, Months and Demand. It is cause maybe the problem? But the other columns are needed because of the filters.
Thank you in advance again if you can check what would be the problem!
User | Count |
---|---|
27 | |
12 | |
8 | |
7 | |
5 |
User | Count |
---|---|
31 | |
15 | |
12 | |
7 | |
6 |