Power BI is turning 10! Tune in for a special live episode on July 24 with behind-the-scenes stories, product evolution highlights, and a sneak peek at what’s in store for the future.
Save the dateEnhance your career with this limited time 50% discount on Fabric and Power BI exams. Ends August 31st. Request your voucher.
Hello everyone,
I hope you are well, I will be really grateful for the person who can help me !
Let's consider the following data :
table : item (sample)
Item_Desc | Date | Quantity | Unit_Cost | Inventory_Value |
01591A | item3 | 05/01/2022 | 1 | 5715 | 5715 |
01591A | item3 | 13/01/2022 | -2 | 5715 | -11430 |
01591A | item3 | 02/02/2022 | 3 | 5715 | 17145 |
01591A | item3 | 03/02/2022 | -2 | 11430 | -11430 |
01591A | item3 | 08/02/2022 | -2 | 5715 | -11430 |
01591A | item3 | 10/02/2022 | 4 | 11430 | 22860 |
01591A | item3 | 16/02/2022 | -1 | 11430 | -5715 |
01591A | item3 | 22/02/2022 | 2 | 11430 | 11430 |
01591A | item3 | 23/02/2022 | -2 | 5715 | -11430 |
01591A | item3 | 02/03/2022 | 3 | 5715 | 17145 |
01464D | item1 | 04/03/2022 | 0 | 632,5 | 0 |
01464D | item1 | 08/03/2022 | -2 | 1265 | -1265 |
01591A | item3 | 08/03/2022 | 3 | 5715 | 17145 |
01591A | item3 | 16/03/2022 | 3 | 5715 | 17145 |
02161A | item4 | 18/03/2022 | 59 | 135,2397 | 7979 |
02161A | item4 | 22/03/2022 | -2 | 270,4794 | -270 |
02161A | item4 | 23/03/2022 | -2 | 270,4794 | -270 |
02161A | item4 | 24/03/2022 | -2 | 135,2397 | -270 |
02161A | item4 | 28/03/2022 | -3 | 135,2397 | -406 |
01591A | item3 | 30/03/2022 | 3 | 5715 | 17145 |
02161A | item4 | 01/04/2022 | -2 | 135,2397 | -270 |
01591A | item3 | 04/04/2022 | 3 | 5715 | 17145 |
021612A | item4 | 05/04/2022 | -2 | 135,2397 | -270 |
02221B | item5 | 05/04/2022 | 29 | 220,9791 | 6408 |
01464D | item1 | 06/04/2022 | -2 | 1265 | -1265 |
02161A | item4 | 06/04/2022 | -2 | 135,2397 | -270 |
02221B | item5 | 06/04/2022 | 29 | 220,9791 | 6408 |
01464D | item1 | 07/04/2022 | 41 | 1265 | 25933 |
01591A | item3 | 07/04/2022 | -2 | 5715 | -11430 |
02161A | item4 | 07/04/2022 | -5 | 135,2397 | -676 |
02161A | item4 | 11/04/2022 | -4 | 135,2397 | -541 |
01591A | item3 | 12/04/2022 | 3 | 5715 | 17145 |
02161A | item4 | 12/04/2022 | -2 | 135,2397 | -270 |
02161A | item4 | 14/04/2022 | -3 | 135,2397 | -406 |
02221B | item5 | 14/04/2022 | -2 | 220,9791 | -442 |
02221B | item5 | 15/04/2022 | -2 | 441,9582 | -442 |
02161A | item4 | 19/04/2022 | -2 | 135,2397 | -270 |
02221B | item5 | 20/04/2022 | -2 | 220,9791 | -442 |
02161A | item4 | 22/04/2022 | -2 | 135,2397 | -270 |
01464D | item1 | 26/04/2022 | -2 | 1265 | -1265 |
02161A | item4 | 26/04/2022 | -5 | 270,4794 | -676 |
02161A | item4 | 27/04/2022 | -2 | 270,4794 | -270 |
02161A | item4 | 28/04/2022 | 99 | 135,2397 | 13389 |
022219B | item5 | 28/04/2022 | -2 | 441,9582 | -442 |
01591A | item3 | 29/04/2022 | -2 | 11430 | -11430 |
... | ... | ... | ... | ... |
schema associated
The dynamic index is obtained by the following measure :
What I want is to compute for each row the cumulated "Inventory_Value" based on the measure "dynamic_index" .
Results expected
This will enable me to know dynamically (by switching between YearMonth) which items represent 80% of the total "Inventory_Value".
Thank you
Solved! Go to Solution.
You don't need the dynamic index for that. All you need to do is accumulate all values that are bigger or equal to the current value.
Cumul =
var a = sum('Item'[Inventory_Value])
var b = CALCULATETABLE(SUMMARIZE('Item','Item'[Item_Desc],"s",sum('Item'[Inventory_Value])),ALLSELECTED())
var c = filter(b,[s]>=a)
return sumx(c,[s])
and you can do the percentage the same way
Cumul % =
var a = sum('Item'[Inventory_Value])
var b = CALCULATETABLE(SUMMARIZE('Item','Item'[Item_Desc],"s",sum('Item'[Inventory_Value])),ALLSELECTED())
var c = filter(b,[s]>=a)
return divide(sumx(c,[s]),sumx(b,[s]),0)
You don't need the dynamic index for that. All you need to do is accumulate all values that are bigger or equal to the current value.
Cumul =
var a = sum('Item'[Inventory_Value])
var b = CALCULATETABLE(SUMMARIZE('Item','Item'[Item_Desc],"s",sum('Item'[Inventory_Value])),ALLSELECTED())
var c = filter(b,[s]>=a)
return sumx(c,[s])
and you can do the percentage the same way
Cumul % =
var a = sum('Item'[Inventory_Value])
var b = CALCULATETABLE(SUMMARIZE('Item','Item'[Item_Desc],"s",sum('Item'[Inventory_Value])),ALLSELECTED())
var c = filter(b,[s]>=a)
return divide(sumx(c,[s]),sumx(b,[s]),0)
Oh my god, that's so amazing! This code is so elegant and helps me solve the dynamic Pareto problem on the sub-category!!!!
To implement real-time filtering out of the Pareto sub-category on category, you only need to do the following operations.
Cumul % =
var a = sum('Item'[Inventory_Value])
var b = CALCULATETABLE(SUMMARIZE('Item','Item'[Item_Desc],"s",sum('Item'[Inventory_Value]),REMOVEFILTERS('Item'[Sub_Category]))
var c = filter(b,[s]>=a)
return
divide(sumx(c,[s]),sumx(b,[s]),0)
Thank you very much !
It works well for me.
Check out the July 2025 Power BI update to learn about new features.
User | Count |
---|---|
23 | |
7 | |
7 | |
6 | |
6 |
User | Count |
---|---|
27 | |
12 | |
10 | |
9 | |
6 |