Power BI is turning 10! Tune in for a special live episode on July 24 with behind-the-scenes stories, product evolution highlights, and a sneak peek at what’s in store for the future.
Save the dateEnhance your career with this limited time 50% discount on Fabric and Power BI exams. Ends August 31st. Request your voucher.
In a Spark notebook in Fabric lakehouse online, this works just fine
spark.sql("drop table SCHEMA.TABLE")
In my VS Code Spark notebook, in the same Lakehouse, Spark SQL commands like
df_raw = spark.sql("select * from SCHEMA.TABLE")
df_raw.show(5)
also works just fine, even if for each Spark command I get the error message in the Problems window.
"spark" is not defined
Trying to drop the specific table, before dropping it in online notebook of course, results in:
Py4JJavaError Traceback (most recent call last)
Cell In[29], line 1----> 1spark.sql("drop table SCHEMA.TABLE")
File c:\ProgramData\anaconda3\envs\fabric-synapse-runtime-1-2\lib\site-packages\pyspark\sql\session.py:1440, in SparkSession.sql(self, sqlQuery, args, **kwargs)
1438try:
1439litArgs = {k: _to_java_column(lit(v)) for k, v in (args or {}).items()}
-> 1440return DataFrame(self._jsparkSession.sql(sqlQuery, litArgs), self)
1441finally:
1442if len(kwargs) > 0:
File c:\ProgramData\anaconda3\envs\fabric-synapse-runtime-1-2\lib\site-packages\py4j\java_gateway.py:1321, in JavaMember.__call__(self, *args)
1315command = proto.CALL_COMMAND_NAME +\
1316self.command_header +\
1317args_command +\
1318proto.END_COMMAND_PART
1320answer = self.gateway_client.send_command(command)
-> 1321return_value = get_return_value(
1322answer, self.gateway_client, self.target_id, self.name)
1324for temp_arg in temp_args:
1325temp_arg._detach()
File c:\ProgramData\anaconda3\envs\fabric-synapse-runtime-1-2\lib\site-packages\pyspark\errors\exceptions\captured.py:169, in capture_sql_exception.<locals>.deco(*a, **kw)
167def deco(*a: Any, **kw: Any) -> Any:
168try:
--> 169return f(*a, **kw)
170except Py4JJavaError as e:
171converted = convert_exception(e.java_exception)
File c:\ProgramData\anaconda3\envs\fabric-synapse-runtime-1-2\lib\site-packages\py4j\protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
324value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325if answer[1] == REFERENCE_TYPE:
--> 326raise Py4JJavaError(
327"An error occurred while calling {0}{1}{2}.\n".
328format(target_id, ".", name), value)
329else:
330raise Py4JError(
331"An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
332format(target_id, ".", name, value))
Py4JJavaError: An error occurred while calling o32.sql.
: org.apache.spark.SparkException: [INTERNAL_ERROR] Found the unresolved operator: 'UnresolvedIdentifier [SCHEMA, TABLE], true
== SQL(line 1, position 1) ==
drop table SCHEMA.TABLE
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
at org.apache.spark.SparkException$.internalError(SparkException.scala:77)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis0$54(CheckAnalysis.scala:755)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis0$54$adapted(CheckAnalysis.scala:750)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:295)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$foreachUp$1(TreeNode.scala:294)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$foreachUp$1$adapted(TreeNode.scala:294)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:294)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis0(CheckAnalysis.scala:750)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis0$(CheckAnalysis.scala:160)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis0(Analyzer.scala:191)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis(CheckAnalysis.scala:156)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis$(CheckAnalysis.scala:146)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:191)
at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:214)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:330)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:211)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:120)
at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:120)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:288)
at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:642)
at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:288)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827)
at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:287)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:120)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:118)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:110)
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97)
at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:640)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:630)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:662)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Thread.java:750)
Is my Spark Conda implementation somehow corrupt? I had a lot of problems installing Pyspark, and had to install Spark runtime environment 1.2 manually like this
pip install https://tridentvscodeextension.blob.core.windows.net/spark-lighter-lib/spark34/spark_lighter_lib-34.0.0.3-py3-none-any.whl
Hi @BiJoe
Thanks for using Microsoft Fabric Community.
This might require a deeper investigation from our engineering team and they can guide you better.
Please go ahead and raise a support ticket to reach our support team:
https://support.fabric.microsoft.com/support
Please provide the ticket number here as we can keep an eye on it.
Thanks
Hi @BiJoe
We haven’t heard from you on the last response and was just checking back to see if you got a chance to create a support ticket. If yes please provide the details here.
Otherwise, will respond back with the more details and we will try to help.
Thanks