Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Prepping for a Fabric certification exam? Join us for a live prep session with exam experts to learn how to pass the exam. Register now.

Reply
wcvinyard_gv
New Member

Power BI on Win 11 ARM VM - R Script Error

Hi,

 

Attempting to display R visual using non R-base libraries grid and gridExtra.  

 

The error message produced is listed next, followed by:

(1) a description of my computing environment

(2) Installed versions for Power BI and R

(3) List of R Script that produces error

(4) List of R Script that successfully displays

 

Anyone have any ideas about what may be causing the error?  I do not believe the cause is an incorrect R installation as other stackoverflow forums suggest.

 

Error Message:
A problem occurred while processing your R script.
Here are the technical details:
Running the R script encountered the following error:

Failed to retrieve error code string from System ->317
Double-check that R is installed correctly on your machine.

 

R is correctly installed as I am also able to successfully display visuals that only require R-base libraries.

 

Computing Environment:

 

Host machine:

macbook pro late 2021 Apple Silicon M1 Max

macOS Ventura 13.4.1

 

Parallels VM:

Processor Apple Silicon 3.20 GHz (4 processors)
Installed RAM 32.0 GB
System type 64-bit operating system, ARM-based processor

Edition Windows 11 Pro
Version 21H2
Installed on ‎06/‎09/‎2022
OS build 22000.2057
Experience Windows Feature Experience Pack 1000.22001.1000.0

 

Power BI Desktop -- Version: 2.118.828.0 64-bit (June 2023)

R-4.3.1 (64bit)

 

Error occurs when I attempt to use gridExtra to display a table of data.

.libPaths() 

[1] "C:/rPackages/4.3"
[2] "C:/Program Files (x86)/R/R-4.3.1/library"

 

R-4.3.1 is installed at folllowing location:

C:\Program Files (x86)\R\R-4.3.1

Power BI Options & Settings lists the R Home Path

Above path suggests 32bit install, but it is actually a 64bit install.  This is the way R installs in this Win11 ARM VM environment, as proof, here is the startup message from Rgui:

 

R version 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

 

Both of below scripts successfully execute and produce visuals in RStudio.

gridExtra_visual.png

 

The script that produces the error is:

**** Code Snip  Start ****

 

# The following code to create a dataframe and remove duplicated rows is always executed and acts as a preamble for your script:

# dataset <- data.frame(Vax Name, VID unt, Total Symp Cnt, Distinct Symp Cnt, Death, Disabled, Life Threat, Avg Nbr Days, Birth Defect, Req ER, Req Hosp)
# dataset <- unique(dataset)

# Paste or type your script code here:
library('grid', lib.loc='C:/rPackages/4.3')
library('gridExtra', lib.loc='C:/rPackages/4.3')

dat <- dataset
dat[is.na(dat)] <- 0

set.seed(123456)

dat_pc <- princomp(dat[, -1], cor=T, fix_sign=TRUE )
dat_km <- kmeans(dat_pc$scores[,1:2], cen = 5)

dat$Comp1 <- dat_pc$sco[,1]
dat$Comp2 <- dat_pc$sco[,2]
dat$Clus  <- dat_km$cluster
dat2 <- dat[,-1]
rownames(dat2) <- dat[, 1]
dat <- dat2
dat <- format(round(dat, 2), nsmall=0, big.mark=",")

colnames(dat) <- sapply(colnames(dat), function(x) paste(strwrap(x, width = 8),  collapse="\n"))
tt <- ttheme_default(
        base_size = 8,
        core     = list(fg_params=list(hjust=1, x=0.90))
      )
grid.arrange(
  tableGrob(head(dat[order(dat$Comp1, decreasing=FALSE),], 20), theme=tt),
  nrow=1
)
 **** Code Snip End ****
 
The script that successfully displays a visual is:
 
**** Code Snip Start ****
 
# The following code to create a dataframe and remove duplicated rows is always executed and acts as a preamble for your script:

# dataset <- data.frame(Vax Name, VID Cnt, Total Symp Cnt, Distinct Symp Cnt, Death, Disabled, Life Threat, Avg Nbr Days, Birth Defect, Req ER, Req Hosp)
# dataset <- unique(dataset)

# Paste or type your script code here:
dat <- dataset
dat[is.na(dat)] <- 0

set.seed(123456)

dat_pc <- princomp(dat[, -1], cor=T, fix_sign=TRUE)
dat_km <- kmeans(dat_pc$scores[,1:2], cen = 5)

par(mfrow=c(2,2))
barplot(dat_pc$sdev, las=2, cex.axis=0.9, cex.names=0.7,main = 'Variance Explained Per Comp')
barplot(dat_pc$loadings[,1], las=2, cex.axis=0.9, cex.names=0.7, main = 'Weight of Orig Vars on Comp 1')
barplot(dat_pc$loadings[,2], las=2, cex.axis=0.9, cex.names=0.7, main = 'Weight of Orig Vars on Comp 2')
plot(dat_pc$scores[,1:2], col = dat_km$clus, cex = 0.5, cex.axis=0.9, cex.lab=0.9, main = 'Kmeans Clusters of Comp1 & 2')
 
**** Code Snip End ****
0 REPLIES 0

Helpful resources

Announcements
PBIApril_Carousel

Power BI Monthly Update - April 2025

Check out the April 2025 Power BI update to learn about new features.

Notebook Gallery Carousel1

NEW! Community Notebooks Gallery

Explore and share Fabric Notebooks to boost Power BI insights in the new community notebooks gallery.

April2025 Carousel

Fabric Community Update - April 2025

Find out what's new and trending in the Fabric community.