Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hello everyone,
I am working on my thesis where I want to modell the bilateral trade volume between certain regions in a network graph. I already have all the necessary data I need but I am currently struggeling with the visualization. You can see my data attached where the trade volume in between every Region is formated. The resulting network graph can be seen in the second attached screenshot. I want to have one node for each region and the links showing the value of exports. Sadly Power BI makes two bubbles (one for Europa as a exporting region and once as an importing region). What do I need to change in my settings or data formatation to change this?
Consider using a Sankey chart visual instead , or a visual that allows directional connections.
Please provide sample data that covers your issue or question completely, in a usable format (not as a screenshot).
Do not include sensitive information or anything not related to the issue or question.
If you are unsure how to upload data please refer to https://community.fabric.microsoft.com/t5/Community-Blog/How-to-provide-sample-data-in-the-Power-BI-...
Please show the expected outcome based on the sample data you provided.
Want faster answers? https://community.fabric.microsoft.com/t5/Desktop/How-to-Get-Your-Question-Answered-Quickly/m-p/1447...
Hey, attached can you find the data I am trying to use. "Region Reporter" and "Region Partner" are the involved regions of the trade. You can understand them as "from" and "to". The third column is the value of the trade. Afrika is exporting to China but China vice versa is also exporting to Afrika. The network should because of this show two connections between those trading regions. Currently is Power BI turning it into two nodes. Once Afrika as a "Exporting Node" and the second as the "Importing Node". You can see the current state at my previous post. In the target state, I would like to show how countries and regions have moved closer or further apart over the decades as a result of trade. Countries that trade a lot together should lie together like on tectonic plates. If they move away from each other (trade between them decreases), then this should be indicated by the fact that they are also moving apart. Hope this helps. Thank you in advance.
| Region Reporter | Region Partner | Value |
| Afrika | Afrika | |
| Afrika | China | $ 11.697.052.096,00 |
| Afrika | Europa | $ 32.370.286.293,00 |
| Afrika | Nordamerika | $ 11.547.242.111,00 |
| Afrika | Ozeanien | $ 916.868.154,00 |
| Afrika | Südamerika | $ 786.517.226,00 |
| Afrika | Südostasien | $ 17.087.135.639,00 |
| Afrika | Westasien/Mittlerer Osten | $ 1.587.069.498,00 |
| China | Afrika | $ 24.196.441.517,00 |
| China | China | |
| China | Europa | $ 641.526.421.346,00 |
| China | Nordamerika | $ 713.995.945.789,00 |
| China | Ozeanien | $ 88.002.464.102,00 |
| China | Südamerika | $ 115.227.724.771,00 |
| China | Südostasien | $ 525.368.524.987,00 |
| China | Westasien/Mittlerer Osten | $ 164.627.646.361,00 |
| Europa | Afrika | $ 22.968.321.115,00 |
| Europa | China | $ 277.421.557.619,00 |
| Europa | Europa | $ 3.897.583.123.768,00 |
| Europa | Nordamerika | $ 624.142.028.601,00 |
| Europa | Ozeanien | $ 42.547.509.866,00 |
| Europa | Südamerika | $ 63.888.372.048,00 |
| Europa | Südostasien | $ 199.614.722.908,00 |
| Europa | Westasien/Mittlerer Osten | $ 190.799.326.196,00 |
| Nordamerika | Afrika | $ 7.096.064.005,00 |
| Nordamerika | China | $ 186.576.013.648,00 |
| Nordamerika | Europa | $ 533.724.700.498,00 |
| Nordamerika | Nordamerika | $ 1.613.750.036.595,00 |
| Nordamerika | Ozeanien | $ 38.538.147.278,00 |
| Nordamerika | Südamerika | $ 136.061.934.079,00 |
| Nordamerika | Südostasien | $ 245.096.148.566,00 |
| Nordamerika | Westasien/Mittlerer Osten | $ 45.824.792.286,00 |
| Ozeanien | Afrika | $ 1.343.929.931,00 |
| Ozeanien | China | $ 115.841.244.033,00 |
| Ozeanien | Europa | $ 24.377.570.327,00 |
| Ozeanien | Nordamerika | $ 20.134.421.422,00 |
| Ozeanien | Ozeanien | $ 14.460.583.910,00 |
| Ozeanien | Südamerika | $ 3.348.206.787,00 |
| Ozeanien | Südostasien | $ 110.926.180.230,00 |
| Ozeanien | Westasien/Mittlerer Osten | $ 3.571.976.659,00 |
| Südamerika | Afrika | $ 1.919.248.658,00 |
| Südamerika | China | $ 128.143.303.332,00 |
| Südamerika | Europa | $ 65.114.659.763,00 |
| Südamerika | Nordamerika | $ 67.398.638.702,00 |
| Südamerika | Ozeanien | $ 1.155.241.187,00 |
| Südamerika | Südamerika | $ 36.733.225.918,00 |
| Südamerika | Südostasien | $ 37.297.001.290,00 |
| Südamerika | Westasien/Mittlerer Osten | $ 11.184.669.918,00 |
| Südostasien | Afrika | $ 10.605.542.966,00 |
| Südostasien | China | $ 159.762.887.605,00 |
| Südostasien | Europa | $ 171.939.139.022,00 |
| Südostasien | Nordamerika | $ 248.494.463.366,00 |
| Südostasien | Ozeanien | $ 28.350.516.067,00 |
| Südostasien | Südamerika | $ 23.560.742.420,00 |
| Südostasien | Südostasien | $ 106.250.188.161,00 |
| Südostasien | Westasien/Mittlerer Osten | $ 44.969.852.532,00 |
| Westasien | Afrika | $ 1.712.354.128,00 |
| Westasien | China | $ 3.281.152.224,00 |
| Westasien | Europa | $ 103.939.786.009,00 |
| Westasien | Nordamerika | $ 19.856.771.647,00 |
| Westasien | Ozeanien | $ 1.084.440.424,00 |
| Westasien | Südamerika | $ 1.840.273.839,00 |
| Westasien | Südostasien | $ 3.720.834.517,00 |
| Westasien | Westasien/Mittlerer Osten | $ 17.421.907.039,00 |
Why is Africa not trading with itself?
If you have time to learn Vega - here is the chart I would use.
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
| User | Count |
|---|---|
| 38 | |
| 36 | |
| 33 | |
| 33 | |
| 29 |
| User | Count |
|---|---|
| 134 | |
| 96 | |
| 78 | |
| 67 | |
| 65 |