Explore and share Fabric Notebooks to boost Power BI insights in the new community notebooks gallery.
Check it out now!Microsoft is giving away 50,000 FREE Microsoft Certification exam vouchers. Get Fabric certified for FREE! Learn more
I am trying to create cumulative view of when stories are added to a sprint using a table of data that contains the date the story was added to the sprint. I thought this would be easy, but its proving more of a head scratcher than I thought, and I'd welcome suggestions of where I am going wrong.
The data table I am using is as follows:
issue_id | sprint_id | name | state | start_date | end_date | complete_date | max_sprint_date | story_points | project_key | year_week | squad_sprint | date_added | in_scope | issue_key |
309266 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 0 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 17:09 | Yes | CUS-3017 |
428766 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 8 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 15:55 | Yes | CUS-3648 |
418234 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 2 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 09:38 | Yes | CUS-3577 |
428718 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 8 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 08/10/2024 16:07 | Yes | CUS-3646 |
316310 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 0 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 17:09 | Yes | CUS-3134 |
428689 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 0 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 08/10/2024 09:51 | Yes | CUS-3645 |
428498 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 3 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 17:09 | Yes | CUS-3642 |
429016 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 2 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 30/09/2024 13:14 | Yes | CUS-3652 |
329884 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 0 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 02/10/2024 08:56 | Yes | CUS-3259 |
307996 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 0 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 08/10/2024 09:55 | Yes | CUS-2994 |
430213 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 5 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 10/10/2024 09:56 | Yes | CUS-3662 |
281224 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 0 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 08/10/2024 09:55 | Yes | CUS-2100 |
428492 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 5 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 17:09 | Yes | CUS-3641 |
429493 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 2 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 15:44 | Yes | CUS-3656 |
429256 | 3714 | CS-Sprint 43 | closed | 02/10/2024 11:09 | 15/10/2024 20:00 | 2024-10-15T15:46:40.545Z | 14/10/2024 23:59 | 8 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 02/10/2024 12:11 | Yes | CUS-3655 |
424689 | 3714 | CS-Sprint 43 | future | 02/10/2024 00:00 | 15/10/2024 20:00 | 14/10/2024 23:59 | 0 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 15:47 | No | CUS-3617 | |
429500 | 3714 | CS-Sprint 43 | active | 02/10/2024 11:09 | 15/10/2024 20:00 | 14/10/2024 23:59 | 0 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 02/10/2024 08:58 | No | CUS-3657 | |
408811 | 3714 | CS-Sprint 43 | active | 02/10/2024 11:09 | 15/10/2024 20:00 | 14/10/2024 23:59 | 5 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 17:09 | No | CUS-3505 | |
428893 | 3714 | CS-Sprint 43 | active | 02/10/2024 11:09 | 15/10/2024 20:00 | 14/10/2024 23:59 | 2 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 01/10/2024 15:47 | No | CUS-3651 | |
428373 | 3714 | CS-Sprint 43 | active | 02/10/2024 11:09 | 15/10/2024 20:00 | 14/10/2024 23:59 | 0 | CUS | 2024_42 | CUS-14/10/2024 23:59:59 | 02/10/2024 09:43 | No | CUS-3636 |
My thoughts were to use the line graph visual, with the date added as the x-axis and then create a measure that counts all stories where the dateadded value is <= to each point on the x-axis. That way, I would get a nice view of the sprint and see as a cumulative view the stories getting added to the sprint.
However, I can't work out the date value of each point on the x-axis in my measure. Essentially, I want to say for each point on the x-axis:
count the number of stories where the date added <= the data point on the x-axis
If at all possible, I would really like to avoid having to create a date table for the x-axis - it feels like pbi should be clever enough to just use the dateadded field.
Thoughts?
Solved! Go to Solution.
Hi @chipchidster ,
I made a sample for you.
Hi @chipchidster ,
I made a sample for you.