March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount! Early bird discount ends December 31.
Register NowBe one of the first to start using Fabric Databases. View on-demand sessions with database experts and the Microsoft product team to learn just how easy it is to get started. Watch now
Good Day,
I have a data like this and those in red font color are what i need.
The Value needed is the value of max date per month.
Amount is cumulative that's why i only wanted to get the last value per month.
I tried it in power query but i did not succeed.
In DAX, i did not succeed.
Also, It will be nice if we will use calculated column for future steps.
Thank you
Date | AMT | Index | Value Needed |
01/09/2019 00:00:00 | 6,564,571.02 | 2319 | 6,564,571.02 |
30/08/2019 00:00:00 | 6,784,825.87 | 2318 | 6,784,825.87 |
29/08/2019 00:00:00 | 6,784,876.25 | 2317 | |
28/08/2019 00:00:00 | 10,646,261.63 | 2316 | |
27/08/2019 00:00:00 | 10,144,474.03 | 2315 | |
25/08/2019 00:00:00 | 9,680,986.07 | 2314 | |
24/08/2019 00:00:00 | 9,351,917.25 | 2313 | |
22/08/2019 00:00:00 | 8,903,386.66 | 2312 | |
21/08/2019 00:00:00 | 8,829,409.80 | 2311 | |
20/08/2019 00:00:00 | 8,504,821.45 | 2310 | |
17/08/2019 00:00:00 | 8,506,139.43 | 2309 | |
15/08/2019 00:00:00 | 8,487,484.41 | 2308 | |
14/08/2019 00:00:00 | 9,475,110.50 | 2307 | |
09/08/2019 00:00:00 | 8,967,067.26 | 2306 | |
08/08/2019 00:00:00 | 8,828,632.28 | 2305 | |
07/08/2019 00:00:00 | 8,584,191.72 | 2304 | |
06/08/2019 00:00:00 | 8,278,699.83 | 2303 | |
04/08/2019 00:00:00 | 7,456,815.72 | 2302 | |
03/08/2019 00:00:00 | 7,410,078.32 | 2301 | |
01/08/2019 00:00:00 | 7,325,497.01 | 2300 | |
31/07/2019 00:00:00 | 7,344,648.91 | 2299 | 7,344,648.91 |
30/07/2019 00:00:00 | 12,384,076.80 | 2298 | |
29/07/2019 00:00:00 | 12,250,113.29 | 2297 | |
28/07/2019 00:00:00 | 11,953,405.05 | 2296 | |
27/07/2019 00:00:00 | 11,922,883.41 | 2295 | |
26/07/2019 00:00:00 | 11,916,823.01 | 2294 | |
25/07/2019 00:00:00 | 11,798,432.56 | 2293 | |
24/07/2019 00:00:00 | 11,756,496.05 | 2292 | |
23/07/2019 00:00:00 | 11,602,221.32 | 2291 | |
22/07/2019 00:00:00 | 11,531,069.08 | 2290 | |
21/07/2019 00:00:00 | 11,373,897.13 | 2289 | |
20/07/2019 00:00:00 | 11,441,593.59 | 2288 | |
18/07/2019 00:00:00 | 10,621,671.32 | 2287 | |
17/07/2019 00:00:00 | 11,395,626.61 | 2286 | |
16/07/2019 00:00:00 | 11,254,372.45 | 2285 | |
15/07/2019 00:00:00 | 10,840,902.51 | 2284 | |
14/07/2019 00:00:00 | 11,445,551.68 | 2283 | |
13/07/2019 00:00:00 | 11,380,865.10 | 2282 | |
11/07/2019 00:00:00 | 11,321,219.69 | 2281 | |
10/07/2019 00:00:00 | 11,191,798.57 | 2280 | |
09/07/2019 00:00:00 | 11,150,184.15 | 2279 | |
08/07/2019 00:00:00 | 10,255,781.71 | 2278 | |
06/07/2019 00:00:00 | 11,796,536.57 | 2277 | |
05/07/2019 00:00:00 | 11,101,169.96 | 2276 | |
04/07/2019 00:00:00 | 11,039,629.96 | 2275 | |
03/07/2019 00:00:00 | 11,013,240.08 | 2274 | |
02/07/2019 00:00:00 | 10,915,945.95 | 2273 | |
01/07/2019 00:00:00 | 10,857,137.88 | 2272 | |
30/06/2019 00:00:00 | 11,102,376.96 | 2271 | 11,102,376.96 |
29/06/2019 00:00:00 | 9,879,163.11 | 2270 | |
28/06/2019 00:00:00 | 9,879,178.10 | 2269 | |
27/06/2019 00:00:00 | 9,822,649.14 | 2268 | |
26/06/2019 00:00:00 | 16,028,568.40 | 2267 | |
25/06/2019 00:00:00 | 15,411,345.26 | 2266 | |
24/06/2019 00:00:00 | 14,814,525.10 | 2265 | |
23/06/2019 00:00:00 | 15,374,982.22 | 2264 | |
22/06/2019 00:00:00 | 15,398,195.10 | 2263 | |
20/06/2019 00:00:00 | 14,987,452.75 | 2262 | |
19/06/2019 00:00:00 | 14,889,967.02 | 2261 | |
18/06/2019 00:00:00 | 14,713,552.74 | 2260 | |
17/06/2019 00:00:00 | 14,352,570.70 | 2259 | |
16/06/2019 00:00:00 | 15,421,314.71 | 2258 | |
15/06/2019 00:00:00 | 15,270,984.00 | 2257 | |
13/06/2019 00:00:00 | 15,335,104.28 | 2256 | |
12/06/2019 00:00:00 | 14,879,602.15 | 2255 | |
11/06/2019 00:00:00 | 14,180,981.89 | 2254 | |
10/06/2019 00:00:00 | 14,016,994.65 | 2253 | |
09/06/2019 00:00:00 | 13,881,245.45 | 2252 | |
08/06/2019 00:00:00 | 13,190,966.75 | 2251 | |
07/06/2019 00:00:00 | 12,986,507.78 | 2250 | |
06/06/2019 00:00:00 | 12,936,747.02 | 2249 | |
02/06/2019 00:00:00 | 12,477,657.82 | 2248 | |
01/06/2019 00:00:00 | 12,477,725.94 | 2247 | |
31/05/2019 00:00:00 | 12,443,463.45 | 2246 | 12,443,463.45 |
30/05/2019 00:00:00 | 12,249,631.13 | 2245 | |
29/05/2019 00:00:00 | 16,926,496.96 | 2244 | |
28/05/2019 00:00:00 | 16,474,498.44 | 2243 | |
27/05/2019 00:00:00 | 16,405,291.78 | 2242 | |
26/05/2019 00:00:00 | 16,405,305.92 | 2241 | |
25/05/2019 00:00:00 | 16,236,689.47 | 2240 | |
24/05/2019 00:00:00 | 16,220,981.51 | 2239 | |
23/05/2019 00:00:00 | 15,942,284.55 | 2238 | |
22/05/2019 00:00:00 | 15,682,658.16 | 2237 | |
21/05/2019 00:00:00 | 15,542,894.55 | 2236 | |
20/05/2019 00:00:00 | 17,283,482.01 | 2235 | |
19/05/2019 00:00:00 | 17,191,384.51 | 2234 | |
18/05/2019 00:00:00 | 17,106,850.27 | 2233 | |
16/05/2019 00:00:00 | 17,002,308.08 | 2232 | |
15/05/2019 00:00:00 | 16,771,051.57 | 2231 | |
14/05/2019 00:00:00 | 16,948,269.26 | 2230 | |
13/05/2019 00:00:00 | 16,299,412.40 | 2229 | |
12/05/2019 00:00:00 | 16,252,739.76 | 2228 | |
11/05/2019 00:00:00 | 15,368,532.15 | 2227 | |
10/05/2019 00:00:00 | 15,368,577.07 | 2226 | |
09/05/2019 00:00:00 | 14,922,381.87 | 2225 | |
08/05/2019 00:00:00 | 14,858,479.23 | 2224 | |
07/05/2019 00:00:00 | 14,333,399.34 | 2223 | |
06/05/2019 00:00:00 | 13,706,829.49 | 2222 | |
05/05/2019 00:00:00 | 13,236,172.79 | 2221 | |
02/05/2019 00:00:00 | 13,073,516.20 | 2220 | |
01/05/2019 00:00:00 | 13,038,987.11 | 2219 | |
30/04/2019 00:00:00 | 12,966,690.09 | 2218 | 12,966,690.09 |
29/04/2019 00:00:00 | 17,070,367.66 | 2217 | |
28/04/2019 00:00:00 | 17,059,598.80 | 2216 | |
27/04/2019 00:00:00 | 17,064,113.16 | 2215 | |
26/04/2019 00:00:00 | 16,808,617.54 | 2214 | |
25/04/2019 00:00:00 | 16,808,672.04 | 2213 | |
24/04/2019 00:00:00 | 16,780,668.21 | 2212 | |
23/04/2019 00:00:00 | 16,742,610.73 | 2211 | |
22/04/2019 00:00:00 | 16,382,162.33 | 2210 | |
21/04/2019 00:00:00 | 15,864,695.34 | 2209 | |
20/04/2019 00:00:00 | 15,904,837.57 | 2208 | |
18/04/2019 00:00:00 | 15,865,711.01 | 2207 | |
17/04/2019 00:00:00 | 17,386,357.16 | 2206 | |
16/04/2019 00:00:00 | 17,218,986.27 | 2205 | |
15/04/2019 00:00:00 | 17,219,000.41 | 2204 | |
14/04/2019 00:00:00 | 17,646,418.81 | 2203 | |
13/04/2019 00:00:00 | 17,333,572.42 | 2202 | |
11/04/2019 00:00:00 | 17,100,053.95 | 2201 | |
10/04/2019 00:00:00 | 17,080,604.75 | 2200 | |
09/04/2019 00:00:00 | 17,210,955.81 | 2199 | |
08/04/2019 00:00:00 | 16,543,353.82 | 2198 | |
07/04/2019 00:00:00 | 16,417,625.02 | 2197 | |
06/04/2019 00:00:00 | 14,970,108.89 | 2196 | |
05/04/2019 00:00:00 | 14,970,123.86 | 2195 | |
04/04/2019 00:00:00 | 14,882,377.11 | 2194 | |
03/04/2019 00:00:00 | 14,679,561.97 | 2193 | |
02/04/2019 00:00:00 | 14,489,547.64 | 2192 | |
01/04/2019 00:00:00 | 14,926,570.78 | 2191 | |
31/03/2019 00:00:00 | 14,340,613.32 | 2190 | 14,340,613.32 |
Solved! Go to Solution.
Hi @mussaenda
I am attaching pbix file with your sample data and formula
It works with sample data
Here is a way of doing it in Power Query
Please see attached file's Query Editor for steps
let Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("rVpLjuU4DLtKodeGWz//5iqNvv81hn52npXZDeRC1SooxlBIiZL8588v4t80fgvx+CH65/P7K/36+V8/NZVqqTTOJPhnUR4PxuvR3/Tnl9Jv6uH3tW6pS8m9rff18z73aL5PxrX3tZqlrPfN1/4s/B7EZ0rVapLKuepCrwe9xdHZLFmzTBu9HPQSj81ItVMavWba38IOvt3A18JpcPvGXg++xPF7GqRJcf5aF74cfL6B32Uko5E7LXw++Be00FOhSXjOtuNDX3yOsmfj18Q6si3+0Dj4F/jTk/WGP8vGC78f/Cv8sVYSM+Wy4k9Hu3QhN4A/tSWq4OfiDx31UjQ3/Cz+9FRVsvSFf/RLd74vchsPzm3lbjr6pXoDXxrOP8D/zZ+jX7rwfcGdUlPn8j3/0S/pFXzkUGo968Y/+qUL+aEllZJstEyb/0e/CvwWx0f+r9bz+ODL+Nbm16OnNofex4JMaohW3dlOxlHzrMRRdCmoZ6xZxkJ/1+EYOqpMUWTqkj8SA/q7DofRRVLvuvOcDFeH6wV0hgpEN4tkuCpc4uhtIE8jB5W60F0NtgvoULCN+o27q8AaR68E3qA+Lv3KcPVX4uhFGdl/5E/ZAvpRr0TVC3Rtmjpyw8f0iPRTeyWsVU5mOP/QXJaauqu8YTXB1Qpi375x70erfEFNOgreANe2+N6PVvmCmqQYYi/bU0k/WuWwmih1g2MmqGmf/WiVL6jJrKRS0E0sRvajVb6gJoXb77VkXvm9H63yDb6DM8Ij183Io1W+wHe4nJnJcmkL/WiVwrUJ6LM2wcfy4kw7WqULapJS0IXCpS3OtKNVusD3NtCoa30i05xHvlA9mPCHHDlW9WjOIV/gOyl6UDnozh9f4DuxJjF68ntz7jhcPZAFuKRhJY/NGeeNw2qCTktD59Zy32c/Wp1Or4a/KtwenN4Td14I7yeP8Qu97Ge2cb0NkEgzbwG4Qtuv4cPm78RWXaltV/Bh/6qN/JmPAN8Z4xr9GDURmsRSe7Z9emeMSxQd7clMzaDpanGlOmNsUXRD82apyLekVGeMNX52bZZGR/u8bEh1xlguoMMY8zhnd8Y4LLF57tneSm4rPVRXbKOamnHvYw4v9tBWqiu2UUUBvSFxlnn2zff3WCqKrkVSaZTbintxQ6mwmsB32BBle4ptccb4gpqQu/BlLdM+uzPGN/iuBQnY9rhIijPGYb7bJ0uioXpMTnHGmOPo/Bklc+7L/hVnjC+oiZAnx7Bc99ldsQ2rCW1ah3VFjtwtQ3FjqLCaFDkGkan1yQTFDaHCapI5vk+FWm6bM84Yh9UEdK2p2TfPmDPGYUZKstZSLTA5G90Z4zAjF3pDbRori9nR6hzOlSi6aTJ4ms0Zq9tCvZ48fi36MgQ+VeVnlmCuzI4oOoQla4az3aC5Mtvj6IYibujcbH8GV2bbBXRCUp4T8EV/c/OnegddCRTaBHXzpxJHF4ir9pFtdW7mbLFdQJeVkPekQp0p1ij67HzAShTCsuivzhJLHL12GO4CQ78Yqc4Sh6VbUsHZ+zhnd5Y4rNWGqED+MK17mquuzIa12j5zEJ1x3+iuzIa1CnSq6Dwpy2KkuvlTWE0t0ewtqT/9uDpLfEFNraHjL/zMQdRZ4gtqGtYTGsunjVJnicNqglbHQKMmTwsozhKH1QR0GO6mI7d1dnGW+IKatKJ91a+tFGeJw2ra6K3tGwoibv4UVpN99jo6TetGd/OnsJpguEtH9QNnVtUWN38KVz60UapoYUfWVVfFWeKwVjW1mQkEtWnZeXGWOKxV/VQ+bmgwN7qzxGG+a6KG9pVrlq0mZ4nDfAe69tncP8MsPlqdTs+ihrvCEwzKtCLz3I56P3mMX+xlSMjoZrW2fX1G/nM1KoxeRiowfnud/J+rUWH0ap918rYI/F7JxtBBfeqpcstliYvfK9kr6KA/bfT3SjaK3tCJ19qzbIK+V7JhdJinypTbSmr8XslG0RXGj6tk3ejvlWwMvaQOztRRnpRJ75VsFH3My1zaHgNC75Vs/OwlNebHVtJ7JRtVk3bEHp34VhO9V7JRdKSxzzXDbSvpvZKNow9YS3ouZ9B7JRtFnxc8jZHFNvp7JRuOO4p4mcvq1WDSeyUbRWciZGF9VlT0XsmGM/DMM2TPXMtdfqILtUnmiq2UHXce75VsNM8Ug3lCZNbkid1VJwqrafIFvJGyp2bsrjpRWE0wrajajDZqTVrZXXWisJo2uiAydaE7SxxW09xbzPXiY57YXXWisJqQ2xscR+X8CTjQnSUO1yZDUw90g1uyhe4scVir9hnCfbYifaEfrc5ppUabBYNW4ZZ0M3IjvJ/8/fsv", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [Date = _t, #" AMT " = _t, Index = _t, #" Value Needed" = _t]), #"Changed Type" = Table.TransformColumnTypes(Source,{{"Date", type text}, {" AMT ", type number}, {"Index", Int64.Type}, {" Value Needed", type number}}), #"Changed Type1" = Table.TransformColumnTypes(#"Changed Type",{{"Date", type datetime}}), #"Renamed Columns" = Table.RenameColumns(#"Changed Type1",{{" AMT ", "AMT"}}), #"Inserted Year" = Table.AddColumn(#"Renamed Columns", "Year", each Date.Year([Date]), Int64.Type), #"Inserted Month" = Table.AddColumn(#"Inserted Year", "Month", each Date.Month([Date]), Int64.Type), #"Grouped Rows" = Table.Group(#"Inserted Month", {"Year", "Month"}, {{"ALL", each _, type table [Date=datetime, #" AMT "=number, Index=number, #" Value Needed"=number, Year=number, Month=number]}}), #"Added Custom" = Table.AddColumn(#"Grouped Rows", "Custom", each let mydate=List.Max([ALL][Date]) in Table.AddColumn([ALL], "Column",each (if [Date]=mydate then [AMT] else null))), #"Removed Columns" = Table.RemoveColumns(#"Added Custom",{"Year", "Month", "ALL"}), #"Expanded Custom" = Table.ExpandTableColumn(#"Removed Columns", "Custom", {"Date", "AMT", "Index", " Value Needed", "Column"}, {"Date", "AMT", "Index", " Value Needed", "Column"}) in #"Expanded Custom"
Try this column
Column = VAR maxdate = CALCULATE ( MAX ( TableName[Date] ), ALLEXCEPT ( TableName, TableName[Date].[Month], TableName[Date].[Year] ) ) RETURN IF ( [Date] = maxdate, CALCULATE ( SUM ( TableName[ AMT ] ), TableName[Date] = maxdate ) )
Hi @mussaenda
I am attaching pbix file with your sample data and formula
It works with sample data
My fault, i misused one column.
Worked. Thank you!
Also wondering if this can also be done in power query.
Here is a way of doing it in Power Query
Please see attached file's Query Editor for steps
let Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("rVpLjuU4DLtKodeGWz//5iqNvv81hn52npXZDeRC1SooxlBIiZL8588v4t80fgvx+CH65/P7K/36+V8/NZVqqTTOJPhnUR4PxuvR3/Tnl9Jv6uH3tW6pS8m9rff18z73aL5PxrX3tZqlrPfN1/4s/B7EZ0rVapLKuepCrwe9xdHZLFmzTBu9HPQSj81ItVMavWba38IOvt3A18JpcPvGXg++xPF7GqRJcf5aF74cfL6B32Uko5E7LXw++Be00FOhSXjOtuNDX3yOsmfj18Q6si3+0Dj4F/jTk/WGP8vGC78f/Cv8sVYSM+Wy4k9Hu3QhN4A/tSWq4OfiDx31UjQ3/Cz+9FRVsvSFf/RLd74vchsPzm3lbjr6pXoDXxrOP8D/zZ+jX7rwfcGdUlPn8j3/0S/pFXzkUGo968Y/+qUL+aEllZJstEyb/0e/CvwWx0f+r9bz+ODL+Nbm16OnNofex4JMaohW3dlOxlHzrMRRdCmoZ6xZxkJ/1+EYOqpMUWTqkj8SA/q7DofRRVLvuvOcDFeH6wV0hgpEN4tkuCpc4uhtIE8jB5W60F0NtgvoULCN+o27q8AaR68E3qA+Lv3KcPVX4uhFGdl/5E/ZAvpRr0TVC3Rtmjpyw8f0iPRTeyWsVU5mOP/QXJaauqu8YTXB1Qpi375x70erfEFNOgreANe2+N6PVvmCmqQYYi/bU0k/WuWwmih1g2MmqGmf/WiVL6jJrKRS0E0sRvajVb6gJoXb77VkXvm9H63yDb6DM8Ij183Io1W+wHe4nJnJcmkL/WiVwrUJ6LM2wcfy4kw7WqULapJS0IXCpS3OtKNVusD3NtCoa30i05xHvlA9mPCHHDlW9WjOIV/gOyl6UDnozh9f4DuxJjF68ntz7jhcPZAFuKRhJY/NGeeNw2qCTktD59Zy32c/Wp1Or4a/KtwenN4Td14I7yeP8Qu97Ge2cb0NkEgzbwG4Qtuv4cPm78RWXaltV/Bh/6qN/JmPAN8Z4xr9GDURmsRSe7Z9emeMSxQd7clMzaDpanGlOmNsUXRD82apyLekVGeMNX52bZZGR/u8bEh1xlguoMMY8zhnd8Y4LLF57tneSm4rPVRXbKOamnHvYw4v9tBWqiu2UUUBvSFxlnn2zff3WCqKrkVSaZTbintxQ6mwmsB32BBle4ptccb4gpqQu/BlLdM+uzPGN/iuBQnY9rhIijPGYb7bJ0uioXpMTnHGmOPo/Bklc+7L/hVnjC+oiZAnx7Bc99ldsQ2rCW1ah3VFjtwtQ3FjqLCaFDkGkan1yQTFDaHCapI5vk+FWm6bM84Yh9UEdK2p2TfPmDPGYUZKstZSLTA5G90Z4zAjF3pDbRori9nR6hzOlSi6aTJ4ms0Zq9tCvZ48fi36MgQ+VeVnlmCuzI4oOoQla4az3aC5Mtvj6IYibujcbH8GV2bbBXRCUp4T8EV/c/OnegddCRTaBHXzpxJHF4ir9pFtdW7mbLFdQJeVkPekQp0p1ij67HzAShTCsuivzhJLHL12GO4CQ78Yqc4Sh6VbUsHZ+zhnd5Y4rNWGqED+MK17mquuzIa12j5zEJ1x3+iuzIa1CnSq6Dwpy2KkuvlTWE0t0ewtqT/9uDpLfEFNraHjL/zMQdRZ4gtqGtYTGsunjVJnicNqglbHQKMmTwsozhKH1QR0GO6mI7d1dnGW+IKatKJ91a+tFGeJw2ra6K3tGwoibv4UVpN99jo6TetGd/OnsJpguEtH9QNnVtUWN38KVz60UapoYUfWVVfFWeKwVjW1mQkEtWnZeXGWOKxV/VQ+bmgwN7qzxGG+a6KG9pVrlq0mZ4nDfAe69tncP8MsPlqdTs+ihrvCEwzKtCLz3I56P3mMX+xlSMjoZrW2fX1G/nM1KoxeRiowfnud/J+rUWH0ap918rYI/F7JxtBBfeqpcstliYvfK9kr6KA/bfT3SjaK3tCJ19qzbIK+V7JhdJinypTbSmr8XslG0RXGj6tk3ejvlWwMvaQOztRRnpRJ75VsFH3My1zaHgNC75Vs/OwlNebHVtJ7JRtVk3bEHp34VhO9V7JRdKSxzzXDbSvpvZKNow9YS3ouZ9B7JRtFnxc8jZHFNvp7JRuOO4p4mcvq1WDSeyUbRWciZGF9VlT0XsmGM/DMM2TPXMtdfqILtUnmiq2UHXce75VsNM8Ug3lCZNbkid1VJwqrafIFvJGyp2bsrjpRWE0wrajajDZqTVrZXXWisJo2uiAydaE7SxxW09xbzPXiY57YXXWisJqQ2xscR+X8CTjQnSUO1yZDUw90g1uyhe4scVir9hnCfbYifaEfrc5ppUabBYNW4ZZ0M3IjvJ/8/fsv", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type text) meta [Serialized.Text = true]) in type table [Date = _t, #" AMT " = _t, Index = _t, #" Value Needed" = _t]), #"Changed Type" = Table.TransformColumnTypes(Source,{{"Date", type text}, {" AMT ", type number}, {"Index", Int64.Type}, {" Value Needed", type number}}), #"Changed Type1" = Table.TransformColumnTypes(#"Changed Type",{{"Date", type datetime}}), #"Renamed Columns" = Table.RenameColumns(#"Changed Type1",{{" AMT ", "AMT"}}), #"Inserted Year" = Table.AddColumn(#"Renamed Columns", "Year", each Date.Year([Date]), Int64.Type), #"Inserted Month" = Table.AddColumn(#"Inserted Year", "Month", each Date.Month([Date]), Int64.Type), #"Grouped Rows" = Table.Group(#"Inserted Month", {"Year", "Month"}, {{"ALL", each _, type table [Date=datetime, #" AMT "=number, Index=number, #" Value Needed"=number, Year=number, Month=number]}}), #"Added Custom" = Table.AddColumn(#"Grouped Rows", "Custom", each let mydate=List.Max([ALL][Date]) in Table.AddColumn([ALL], "Column",each (if [Date]=mydate then [AMT] else null))), #"Removed Columns" = Table.RemoveColumns(#"Added Custom",{"Year", "Month", "ALL"}), #"Expanded Custom" = Table.ExpandTableColumn(#"Removed Columns", "Custom", {"Date", "AMT", "Index", " Value Needed", "Column"}, {"Date", "AMT", "Index", " Value Needed", "Column"}) in #"Expanded Custom"
What can I do without your help @Zubair_Muhammad !
Thank you for this! If you will held a training, I will voluntarily participate!
Really, Thank you!!
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount!
Your insights matter. That’s why we created a quick survey to learn about your experience finding answers to technical questions.
Arun Ulag shares exciting details about the Microsoft Fabric Conference 2025, which will be held in Las Vegas, NV.
User | Count |
---|---|
124 | |
89 | |
84 | |
70 | |
51 |
User | Count |
---|---|
206 | |
143 | |
97 | |
79 | |
68 |