Check your eligibility for this 50% exam voucher offer and join us for free live learning sessions to get prepared for Exam DP-700.
Get StartedDon't miss out! 2025 Microsoft Fabric Community Conference, March 31 - April 2, Las Vegas, Nevada. Use code MSCUST for a $150 discount. Prices go up February 11th. Register now.
Hello,
I am currently working with JSON data and facing an issue in parsing it in power bi. The JSON data I have is not consistent in length. It has a variable number of columns in each row, as well as there, are sublists(Old & New) in some rows. So when I parse the data some of the sublists of the data is stored as `Record` while other who is not having any sublists are parsed properly. As shown in the screenshot the one where the old and new value is present those are not parsed while other rows are converted into columns properly.
I would like to parse the remaining records so that I could combine them using Dax as per my requirement in one column. Right now the columns are a mix of Records and individual values because of it I am not able to expand into new columns. It would be great if you could let me know a way I could do it in M Query or any other power bi feature.
Any help would be appreciated!
Solved! Go to Solution.
Please indicate how you want to expand these records. Do you want them split into columns, split into rows, concatenated inside the cell?
Here's an example of how to split into new columns
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("7V3pb9tIlv9XiN4vu0BaqJvk7ifHSafTY3eMODuN3cnAYEuMzYksenQk4170/76kjlhiPZJ1kZScCgaYtqSqenX86h31jr/97Yf/+/jDOJ8t58l4eZNNPv7wnx9/wIgy9PGHFx9/WC3S+bdPCQvF+tPxNEtnT78mfP1ptri5S+aTm/tslt2v7tff7b5YLLOHdDa5eUge78um8/Sfq2yebjtY/yq9f5jmj2m663b94ZeiUT6/ma3uf0/nTx/f5av59PFmnizTTQ9bcnfDlN8vnn6++3iST6fJ/Ca5z1ez5dPXW4KrrXYf17VK/lVpReODL1ra/XOVzJdpOY3quNIPWnpKZrNVMq3rZvttTR/ju3T8udiWbHKzzNcfv0xn/0iKuQd/Sb7k+SJ7EVy+kn96kyyXxUZm+aymr5tkMpmni8UNbvsBqfvBOFs+1n23WO72Hvjyj+zhZpxP0oMjmIzHq/vVtGi2OV+bE7P36c3koMv9bypLu/9VdUHXIy2zL+nuaP/5w99f1KEsojLKGEUMRFnYBcow4pjGYXT45Twd58UYs23/6PDbNJnPntb3bHs8aqC6/Xi32YuCpHQ23lvnKpaPAMjPAcYesp1AluFIhmzBLjEI2bgZsiDLqwNhEwZrAIjKfwJFEW6FIvZY7A6Lb2eLh+IeDl7/+iH4uEKIiOBqNb3PZ/n09vFFcHXmwdoRWGMArAzDUmwLWC2kWNeQZoQg4iHt2evzQywB9E6MCD1xxIZIYM+EB0Xsu/cffn53dfb61dvzHRO+vio+vA4uy8/e/vo6OC8Y9Ov3wcXFlYd3f/AmoZn07OHt4e3hfVzwFpByvLWLHqdyvLO2eeB6Sfo7wOL2ocRj0WPRY7EvLEYCNBpHIYRFiroQe4vheEyZaERu8zvP1VUNelsxC0IWU+5R61F7zKiFrMcnhtrzd786Ra2HrIfsEUM2BOxLHrIesh6yxwtZ7ASyyGPWY9ZjtifMEs9mPWQ9ZE8GshgRiM1GGIYs7QKyjVBtQmoNTNdGY45DRlsB643GHSL27avzF8HFxblHbifIJRQyQyEMPqpSdjLIjUTIQ49cz2t7QyxBBP2I0Y8ID4pdEsFhdB67Hrseu0ePXVhi9tj12PXYPRrsMsBAxTkFnZ9od+Hrzl2kOOXeRcpj93ljFwiKJzyOThy7GKnwXQJil6JjyG/xHOD7If1XsgjezZd3+UM6ycaL4Pohny8Xu5iB9+ld8ns2zQpMFYAOzhaLfJwV27Aow3SDwKN/CPR/55wbc4/+b92Q3Wq03gCUEL69Nz0b7x/IsRx/EMcYjPQ7ofcmhhkx1Z4ZPQYch+hIkGzFx3/LxncFkw6uV/PbbJxMCzaeFox6mi2WC59RozNUUwHmhRMEgrXoAtW4AGFMYtaIbu/4cdAqonS0vWOPHdcet93gNgSM2XWZ5rphxz7T3PEK1VaQfVMMm8yWaeqx2wl2GZSLlRI4qv6URGka+6QZw0L3/P3bD2/Pzy6C87P3r4NCMLr+74sPZ79+uA7e/RT89vb857cfvCTdDao5kg1dXj/2uPba8QljmoYSppmIIOWYk2ZI9wFWjCIq2o3SoefAXt89MSQKwWWZGeEYcrxkLXYqWZFlURT60KNnh8Wzn6+CH4PrZVpsQHCdzW7vfO2DDhEK5afyCPUI9Qg9FoTK0myBUAohNDRJIKdY3Id45ydH8LlMlnfp1+BqnhWX1Yvg1ejdqNAGnYTuccyCcHlXYHOepkvQT0oZUO/z4ovFsjwTDci6fNuGLRZRFB41wOS0cCEBMzR6fJ0Cvt4ln6fJbBK8zGfpzqHwlzybwXjQAxhjiEbBb3k++VqcgBfB9SpbpgGGHJw0oPZymuf3n7J0Ogl+zqbThQPEkWNGHJwfikG+xc8fcrwFc6WrxUngzguAHaFFzhkheAS9O3YJFu/+6kx9mnxJCslvEvyU58ug5FRns8/TQhK8ciABUhIjHvw2CjAJLrNpGrzPkyc+he341E/JvNix22U+c8WnniI2jxJ5YIIl3rdo6KHnoffdQY8B0MOgt83zFxGfA/Q2pRaT+WNwNp2m89vH4HyeLctn8RJ9wXky/6asXU/T9GEv6MsemiEPXibz8TQpRs2K/093sCSIW8Hym5HEmeJ21KYSEJV0+8rnUfmcUNmISDcM06OyU1T6FwKPSo/KY0KlYJFnlacKSntkWaGnES5tYDk1nHD6fb4FPAeceOb1TJmXQF6i9KD0oBwOlLI3dcwRnJGrpdwDUMiBhiiuhCh5X82TB/53JrWuM+yguMcMOyIEMuxwAWfK0kYlojimyKPyVFGJGfLJr4aDJhAIGIImmGMIBESYiBi14pI7BGZE93LSfI/49NDsV4KVXa1FTKBo+5ZYeyt3mqPQKnGr3yf3fp/fN1jAwtcczk1hIFlGiPtC9KfMvCLkhcvhhMsIDGI4Fnh6xc9j8zvGJljN2mPTY9Njc3BswkEVHpsemx6bw2IzIrLBlOzgdAhN0mKgOY5kiIaq6HEYiNoqBPjA4OPEbX9ola2pMQfdvlsZqXEVABrRra+QZ7cnyG5LI7Nnt4OxW9nC6wHsAewBfCoAprINOOYMLMPTHYCx8B5Cpwtg5j2EhgSwbCiOEIeKy0dhF/h1rfBuastjLHxJj0FV3p/yabK4SyZp8Jdknqb3PkFqhxiWY1VChCAM484grOh65NHlBF0fsnSRzm73Kmvsh6xcj85HrVg7L47ANF0E1+O7VbFlywKgo1dgswME4pij4Oey6X1wVmz6KrXC5Ovp/dc8nwRXyfxzIz7fXrQhVKDwqKNXIqikNGIYxOlpWJc3zDYU21x8vqR0DzcCFV5cPqgmjfsUlwEMxzuwegh7CNsw9e8Mvf1hVo5PCwVYPiBqCeU2NVExxiMbG7PrirN4W3DXFWaJGWjJNnR3eNwSpoZcwj3vHY73yq+9GKEYkp87Yb33/yh4OuM1SCw/2fH8Kt74UfhTHAnWrHjkq3SWLdLg7OFhmpapYF0YlYo9RcH12W8fXl9cvA5eXvwV7FMZiRf5Ijib3aZTMG/nEyjPofKXB7CMERLCAJu9IZIDxmMSQfkYupOFveHJy6jP6UGGQ1aiHrmcB5UHVR+iIxoYVJ5ReUx5TNlgCnh1/JbP7ABT8elYQilD2xQN3nNgIOReryZ3aToP3qzm8+TeiYYXkTC4zlfLu+DNPE1nwfviiM+D9xMriL/+kswWX7LpFHoB3Xu4/LUN7iwMt7kwjlXNk9PuCY6hSiR4a9E7cqhzwQXlTBwac0Cos+J3lFOXOYc84j2v/hHxXnk18ARCQDdd0Z2LkFMA0xLCKgCmrEQ78/j1+D1h/AKBbqGAI8ZPR9gOQy5M3Q7I1tdrWPSythDViESnEaL6Pp8l00nwS75IH+6CX/Pyv6HC588Z2L3BWUCZkxiYBhBj0QWey9BpzkOLdNfj8giA2G5FtOfF3eH4MhvfJek0OJvP7vLp8g8HJd89hkEMQxmWGIFk6sFtysfho9eaz+EkAObx1BGeoKxIbOuYdbqutTEKY2Eo4x4BZp8DYl+tisWaBRfJ7LY+yMVD2AGEwQAXD2EPYQ/hU4Gw/KgrOPTSE5+EnRghjAinCLdHgyNYcnbsuctbMFxNef+8YOxR2xFq5ecdgsEyL909z6qqouQY7LZbo9qJw+n8ylt3ukKUnAeUstA74Xre5JGkh6QQfuuAmBNmnQiVhJPaqC2YRz3VBPO42vDsEVcDFw7rsxOczQowBGfzRTpLVtPld5gRaICgyRA2q0Ku720lAE1fGjGhYcSCRt2u0rbbSkse2XocExOfcqR3tgnbUkFTTCdZC7QYZnQM74snhSkPp37hJNs145hB+hwZHE0eSk6gdJbM81nwc/7p030y+w6Fzf6wJVsfC1ZFIW+2uKMc0IxztA3nNEuwc3btVMIM0WibG2FYHNP4OSD51XwUvPuaZIvgIp/cZR7HHeFYtnmWOIY82jrD8fFA+DhqID0X+F4m89t8mi2DX5LZ53Saf/Ug7gjEcqRIRLY22Iq5pxsMRzGNaoD40+vXHmptUCMVD4D6XHQNhQKv0+mn4DKdrFNDv5nnqwePt47wBlQwCgmY0xnxLgDXyDGbGGYNSDeRWYwg0so3vctbh1zzepwvl8G7+dyN6oojhIM3yWQxSQulOLu9+5o8WiH6ZTYv9uX2LrlvxPbZRRu6KSf0qNMfALW0IxpC+WO9L8DzwJ5nlh0hSU4kUsYAnzizJEgw05xBeGuhOWrMYiGik8Dty3mWzIKfpsksuXVl8y2Uk+Aqm+bLb/L0q/n6uHveqYJ42TYcIQanDurE+QcjJkKObGzD3vvgKLGezOePwfvk8ffV3D/vdAlh2aIkxLYOSiV3UCfe5QiVARw6UjDeehcOCzLyLMKdy3wC6XSaBtfFns4KldTDrCOYyYak8vUFDJ6kHbFKRAnDvpTuc2OVHrLdQDYGil8zBrnWdoTYACMqiIi5h6yHrIesCmTBrD0UjEbpjMsiiiLiIesh6yGrAlkwggWs39cZZAmmNPaCsYesh6wSZMHgFQp6RXQG2RBF3EPWQ9ZDVgmyQIBMr3JxUArGjBMPWQ9ZD1klyMreFCWX7dH+hBFljG/D6DxkPWQ9ZFsgC4bKgY+poY9D9VjyWGrAEhyuBvoWdWfKxSTy7M9D1kNWCbKyK1HJ/uA6Rl1JrCHZVSn1kPWQ9ZBtgSzolsSggNLuuCzBjHnIesh6yCpANkZgxk2w2meXPg4R8j4OHrIeskqQBX0cwPxkHcXJNEK1Cak1MN1VTiGmkXHiGHz4nwNm/5oVCz1bBi+T22kx/xfB1Zk9jJkQLDjPl4uvZaXQi2R2PAFxjBw10kHXCAbHwJ4U0rFpjSSPdEdI/99kXByUx+ByfJ6DyR30ME6jkASXye1tln5cFUqY+Dca/9ciuJomYzu0v53ns0kyhTrRxDpGR4P1w1NdfFBcjJurko62Evks/Vp8wtGfDUdtv2EowsOmLNw0Bqa1167E44/r/+01na2m0z/7J7bTEeNTWh6QWIUR2UgmVG3MiMUR3LjDBRKHIxafxAVI1Ajmhd5Ybc7XLzoGI7O4l1GLFY73muJivwiP+J8NnGt/i54qTeyGJusSYGpD80OqcenE1fH+RuFoG13b25GKDTEnBI6qG1vmAlBaXS6fiXW6tT8BmWOvGYHgqj8aUbkaqo263wpwRJVmVYT1QCoeYbZ/akjxt0o7ckipUD1tPAwrp42HqGN25JpYpRG3+QC2BxXjEWf7owKgwGFxyzEzJhZjIUbbalzbi51HZXcqxHKz41o95qLzfZS4JikvWZWWFamCq3I9zIWQrjgRlvFxKsPGo6hyJ7c3Eka7IVOJd/dwdxsi+r+w4CEV2uHRtsbP9rAWf1OVduRQfOhhhrS6k6EaL67eAN2TGva+/SEekX1BMCKjWGUbQ9KsHwDXcZVr9DA56CLudsTQCEwRG2EKEFq1Te01OZQRyaGyoyohqt3ZBOH48JSoTsuMEcZktH0f3Co3IW+bHD5EavFJpKz+EUlMLIV/pKgODU5sSaoinWJfgipuxbhbMFSHLE0RpGVxDtfFnOGui97hHxFdF71TIbYiJpBSoTZq1zJDKgldhfLetWABUKnQKI5r7ox6RfRwYu3XEu6dKcRx7bwGGVRFGalp/W1c+almn+6DPdnsSC2hmNaIIFWz/16b8ys3a7kjbt/YXTMP3Mnc6ywbDee3xtLZsFpvZ5/SYnb5ahG8yhZpskiD64d0nCXTbLFcBPmn4DpfLe+KL5bpfBb8li3G+WyRzV4E16PzETBWx8vV/Nq3v3xA4+qz3b50zUQU6x3NEFYdal61aoUlZsNW9pmJxlrilskBWrjGRUsc8Y9uJoQp15lMdNSTEVoMEAm786J8AFC7AmCkW1ZFqm91hPuYFYtaZxVSEx190Flx2j4rc25/eAtvj4XCk9C+RrGxfao+MUqWUolaE/6B2rhBnalMb65PU3Vx33Qy0TqpRHOiJI7pdzFR6fCCTwPm1hDJTt/L6hCGRjRqWB1gliI+fOXVWNBiFauwJnjzbPw01RaHoXqu6MySbkeBi26UZiLzGxRV+M0AJMQ9k9DtfqI95XHfJ6tWJdJeskJEEJslqzRtpY87PW7W/RAWWezYbi1CR8eHcUfT4jbnsE4OHIQYN6CIhichxlzNiNvd+SKGF2RBAeuXgu72gfR0PYZDXo/EzTVSiDkhP5bLsZD63Exq+OuIcCYcTSYcfjLRxqHPBCTE0dGIbJi4o1WInGwotZIgHa+rHTFO1pWGEXWysAxv3XoHnAxjoZN9YSxev5Nb96N6FXanMSmT0CSpHhEx7sBnR4yb88odqVlMKF7Q3YkPjjQr7uR+5q7mtE4DYt+PI9GK29ywrvc7cjOnkDrqx8nd4kQlxwhHVIwi625YXL5DD3dDEU4IHxHrA0eI9ZqWpnA3LupGw5eHdMDRiaOoP6PRQy5CPhI9E4Al78O1TbJnWUqmwuzV98mea0hElQxeKrhmnW1ulcOV5aa94RKXlX0iahvl9rgA3qr8iMgw6yuuhoaU1dCi/icl7TExnhSV+nLmEqlBhRyvN8hpkcngQ1xyDsnAyJyMSCJjbZN01JfpJhGZB5Ruc5UoW53+omqwCEYbQc+kt3KJJC9vc9l8PbHKJhTnw5Q6ClAniIVXpPEuSoSUV5hRT9IFJqhhT4K5OqMAdEqDac9GYyoAqAzzNgiQstbCja5Wc62QhkQOs7d4hWbQZbQepPcVZgRVAyyHMqoxIl2pg5FCaZUURgTpW4lnMkunagKOU8liY+AcXtAqVR7pgAhz4yswrZ2aZmiFNdcOoSXeBPFEba/w+26B0pZAroyoPTMKeAtSEo62RQTsNhKYrLFCbs7nRFhjFzDoK6w7SWYHyUL+likxtLjYUUGOQD8M5etzg+7aztrDMxqWo70xOvTjN3BXsbeNt7godTuJzmxK7WQzG7qxKIR8m2MTWe28A0fF9puyPTbX7vjaaRC7SbR4QXc7CUzJQMeXWN4ddm4dzk6QsJyFjWxmTbw2hgHzVWl4EP24VsKe561xgWQEOTMqOEE0WtJaV5cSO95Y3s/dqImtpBv79bW84bcObIsm0Zlq3Up6NPTAg3iSKvondD2JeMB93yYuaUh3cJ0u81nwU3KfTR/L5Aav8vEyL3u11xVtARcTy4tbmclo3b1YYMJGWFhMzUHinBZvLVUKGk7Gwe8vk7t5ms6Cy+Qf2eRFcPlqmBNtK5hRq0vYkWxjNwkbpc6RWE+YBf1M6Ymlg6PT1QOa8sCmZ7Z8ldJD66t0nn4Ozu/S2e2AWOV283bj1dpih2+dxE48t/A+HfzCoXYbMZzgSm31cNTde1Yr7TYCArU8dnaOvVbzriaF0aWcDEe4DVsrKRdDkW59WCyOqmIAcQeTJjZkCyt1nq7dV0yUIsurPLQz3GDUWVBi15SzwUxOsRhkYBxt4xhM5cbh5acyKQ7CNpOwC4xWdBRongQ7rCyiOYE9jxqXXgVMpcqHopOL7hnF1u1lM7026yWQN4mTvCn65sIjndCx7Mta47ejQ1+DAZezV02m82nY0LJ9WdWMp5H60N7YOj8VmyfKHncUwwnbNHxboUfKyOKdtZpAXWUWTIK5vscE5lJlEor7e6+v5iU3whbkZ68PrWri1rIT/dWUjkXY5GqvQof+4dQNAIGpAJiIwZrCtZY05iKgm3OHNB1aqP3CEqrp+wjRUS0yqd+BjHsutEGDJdyXt5r+Fjdn6VToQC6OZSSsyPeI9lREVL0Jke5x5XKETNgYLggmTZX9+fXfHsDQLU6aMwlB1FTqUEaaK0JCWknev44T1SMBuou0F0TemiflWosaKD++TgcxqQpgkeZUyvgmI6ZdERdw3Oqu7CzFuRN5QWIomGgdpWKprZmAHF2lPQuMR+HhQfxWnEZDBoUizghjkeaBLvNcVK89TUpAnddUGm7PDtr/JHQokdizvuMRBUhpS0sLkiL3Emvbb0EJjLWE2apRw7C24AJsE9dlKBIlBjK2rDeZ1kQwsM1WD7uJ0CSrKj3bqYgDyY8DegrTlnGIaKna104II/Ch0qCiWhLKZD1kltCjnw6tMtetYGMgkjSmIISGlrV3QrVXj8mKM9M1jlG55jvFSoWDnNwMNKrEJfMyUFkTVJDqELYEbkOPG4De7uKWMuCErKZEqQYhonrp6sJDDoY3CAuzjL51gnOOK3VzeKESEc1DFoZRdUEKrSZSyvkGIKWMu9Q7EtzeHhRROGBThwpJWmSWnmpiV9WsO39rPoKiN9qt/LvkWzoL1Fz1qL19CCl8Gu0jCWyaDmFSB0PZtyAriraBG7p+aJ+XT4G5igVACKY7CQY8gkXI0BVIX1mNqvLmWnDT3gsSAzbc+IkVNIWLrO7vk+D1fTq/TWfjx+BsscjHWTHbxYvg7Ww8OujybJxM0vtsHHxcIUTEeX5/v5ply8e99vulNTfttdajwk9wqGkQw5RKmZtECAluOi+S0CR0XzTNO8Dre9y8vXsHTJ2hBxvbfSL2fuLNbceO3avuyoMrFmnoYOgBTxqxRThx7wmpObRV+8Fot4vFcDS4eQ8RolYCvrIrJSCq1Hkta/iiDrTwtC7aDjYGKWllymMzWGlR9h1Flu0LSY9ZdUAtSi3ZrR2rKTql63dr3AHvwjaiPDhz7nM+YLSX8tBWgquIEHNVaF137IiFQw0d2xxzHIbCtG2h+cLlZhWbc+c5DRUHDgkuC00MMXJxnw4wrvNCDKqR3hEbZJ05nAFbrXE40GqFrmt1qA0boY0VrI9hwaTgfXIbmQDtk1Jf3MJQLFettg1I5XVhTQOQPyANWH8LgczHOLYrK6q7BpCfNNEW9+Vuyk40uwDeFw2EZ7kf25NlSETVjZb1x3MxZXUPxv0ML9eV6ZObYSq9K2BMtYVEIBgCg8EQen3YXTJ9CqvdEK9FgSjEc+mpKYy12Y0o/lUe62lxHPpaSCEqr6jF4HoKD5Y9prUXM4b4DeqX38g0rCnoayfkl+g+LyZ5dCs8kT5Jr2HPmvtfdS6umb9S5i+9ca1NqkR+dLfbPbOSJg0JDZuIr7/Kezk9/EjH1+wklGRlgcL+9EZScjEh9g9R+Ql3W9+xMRhqbbNyhwFVG5gjFMhxR0ZviSTG0knA7uv4aAVYqN0mXY0e6QojchdWB0lbGKoZX6sLxdjRpi4IxRW9ORShXhdQFBV1nwKsmQRJvNXdDqlynaXW3kUFqSHo1yGC4Sp72Hyid6DqMvMMtRdtsQQnNBXtYwVFD+zlI7WwlQ6yH463o09bSF3xKu0+qmwbC32IcmVVBAolqTogG8SS1IyvNwf4ytTqo/t6xPqja3UhGSp5IaJqdVETza2vUx9fdt7GWUsB01ZXybq/3oin1gdHyFZRbsAWQtVMO42kSH0IXTO5OHHxb+3z4/I4lv31pRWHDnSh8nWrYtaN4xCoO93QR1RN6LhmNP1tojR+MbpeB4CNNOJwOouGbuJIFhNwtKnqrtXPupBoRTFku1RLB8E1N8lkMk8XixvcdMNTElwn8yQ4LzjJEuplnC0fGzp4Pf0cvJnnX9Lgr1lB9W0K9bFYNh/ztxdQqz+yh5txPmlqWDKoUHcrpCU0S5LQkCCvg9HdwKF+dPViLdNxfh+8SpP7bfkHB+NLXaikmdRoGY4wa7jGnTyXtiRcXtPgwGPhxTaGdpl9qZ6Q/eHUFgZ3fBLhMctsLyZ7cfD0H+OREJoBeUxRRlPICVlOAwMKnkJT4tYnTmFErfPe1ljPOyDCTGG6wNVaZ4lwPN0oFk5l1ELjCG1LiymtTwTWhGy/RjANwVhxt+tKQuFW9qfW5kYc1wvSqpNXbCgiw1WLsRgx01EPXvCwqFyPjZ4sQOA57Fllkhu2xcXQjaHDshqwhdfFXtE8ZWDJ2dgOiW/cLDllwqaIhNrISole1TK8rjMIGbXVOCKlcmNKMuAYpb7Osk8T6P2qNC51rPAqDQpHPCk0hbJXws3klKOqh1iIUUgOxgQ1YTi5r/mFI4nUPWyMlFEuVj6EUI6VbQ6GnqnW2lxzKdt81ILBF+exSbPQdOTCkYIHjqXgGlazslVTTzb6DUlcmzl+OlMimWocZyA1DI+cu9gokK1znMNq8jxT/0bLmpVdxNjDubWNMVgbpuHMsuaY4NCxKwF9yp9xlOrfOvGisrB4NAtL1a42y9tYKSmbYSr4FtSo54CHMsU6XOkQUzaKO+d85pYFWvqWKrD51ttYDAfTNtqMKscTEY7gDLVO15/HbMSb7BvP67ipTrfTsubKq9RooKgrzK5QTOFJc+5SSANGVVVh5aYaF7D8VC5UldHquBipnitpTAL6VyiMSehhLmWtmVJOgAd9hVGp6kwJ4J7PvkXmNzw7/pLcp4vgTfqYztcvjR9nGKHgfTZOg8tslgbv82QSXOT5Q/HN9SpbpgEtDvjH2YfVYpxM83yRvAjOLoKAcobEwfCVnmu6/dZnTYdGyxbBfoEaBU3MtjlUtF05HdX0rrTTk+qS0II1T1yoK0hLvyrGPMgdXIY2q19VpYbFK5dkXKNYQoNTyRqF9et0lQCAUtsbq6d1ySaUlo9wveUzZE7SuIyoi/gRFtXm2zRcSmNLBQmr4kSj0UVOeV/GTPXAz6mxgbhkS46CSi0vk7qijQpFdnT0ZVotnKm+ysYN5WcKDZlJcu78llavmasftLi6fBP8GFwlq2nwMp1/zr9myz+2XkVdn0158hrXCDB5XpNgRX1sk6Y6kHKdQ8W4llaDRys05RqHNbVrF3ruNLhFYotLpKSia6Mtlbl69xiSBh1qTIOGGqco5OGIOMNNjAoVoHOXqOObbQNLuEqW82z8OXi3TuUfvpxn6WzDBfaW4Oz19c3rX8/f/8/Vh3/f/O6pWfmv0nT954tNcYBwglM0/pTglEQpSz6R3wlmqBBXP0UCs0n4++ZX/2F4l/WyLVGMR1HoalswChEZde+ZV60epnMOQU1UbdBa65XCuEB4aV+eAubeqe2qt6by3PVMzQ2yAlVfW/rwWqZy9WONIxXJkV2cK2t/1bEpG6lZkKoNOVE2FJbJuavhX7uabX2us87BsICPhdtJXLDL2F7CpNpGGKPrvPGBQOdiN18x1uq/pbhkjGpXja0YYHrRXyyWSjazDbRUQrUGq+WpitxkEiv66YGHSfWhRpvkgyobK5UZ3DhHKa6T7Imrzox41TEfM8V3J3lUdWc1wPGrg0ozKkST/gfFqo74g3j0mRsta4tNa8HVPChO9LA4siqgbnlXTU+nNq66eTIiVRGZYtS56AYU1lW/HqQ34jLdr9GwGIrvBts5Yq0I6bLWEEgkTZRvYcxG1FindiN7rWkw92Yh5tUIDB4MGTVeL84waX7CUjwkXI3r2AmaTKrxLdTvDIGrCl9M1gqf0sjmWltNBWsDHLqqUGxxKnU2a/AlY5q1sfcNCWKTV+cofSdHUOrrdvdJFNNNy2F2T2VUyYhUdZRpNOv3USG5nei1G4UizVBJF0Yp03tjfjdf3uUP6SQbHxQEzj8F75LP02Q2KVOfzMocJ1KvShlUGEM0Cn7L88nXZD4Jzr6koxfBxncM9nJry6jycprn95+ydDoJfs6m04VJQpXLt4YJVVhEketqY+2nQiccx5WXmdCW2w4vDNUqr8DNphHc8n0vFOtnoXA4KtWrtoVSjSWnxQ0fDcUf2yUdTLk6pzPnVQdyc/GnpriBVXNzQoPL3jk6jLKqm/HOzQyQO5HqBrkBeR9BmFxyY1QbtXr20Y8YqV8MksOrugGnNnmd8bgGDZkpsWCmu/bxorLR3/8f", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t]),
#"Parsed JSON" = Table.TransformColumns(Source,{},Json.Document),
#"Expanded Column1" = Table.ExpandRecordColumn(#"Parsed JSON", "Column1", {"contract_id", "user_id", "client_id", "is_hard_minimum", "is_stipend_payment_required", "employee_id", "vendor_number", "hourly_rate", "stipend_hours", "stipend_dollar_amount", "minimum_hours", "minimum_dollar_amount", "maximum_hours", "maximum_dollar_amount", "maximum_quarterly_hours", "maximum_quarterly_dollar_amount", "maximum_annual_hours", "maximum_annual_dollar_amount", "check_paid_to", "check_paid_to_attention", "check_paid_to_address_1", "check_paid_to_address_2", "check_paid_to_city", "check_paid_to_state", "check_paid_to_zip_code", "is_accumulated", "accumulated_date", "accumulated_hours", "accumulated_amount", "is_active", "employee_record_num", "employee_earn_code", "vendor_address_sequence"}, {"contract_id", "user_id", "client_id", "is_hard_minimum", "is_stipend_payment_required", "employee_id", "vendor_number", "hourly_rate", "stipend_hours", "stipend_dollar_amount", "minimum_hours", "minimum_dollar_amount", "maximum_hours", "maximum_dollar_amount", "maximum_quarterly_hours", "maximum_quarterly_dollar_amount", "maximum_annual_hours", "maximum_annual_dollar_amount", "check_paid_to", "check_paid_to_attention", "check_paid_to_address_1", "check_paid_to_address_2", "check_paid_to_city", "check_paid_to_state", "check_paid_to_zip_code", "is_accumulated", "accumulated_date", "accumulated_hours", "accumulated_amount", "is_active", "employee_record_num", "employee_earn_code", "vendor_address_sequence"}),
#"Removed Other Columns" = Table.SelectColumns(#"Expanded Column1",{"contract_id", "user_id", "client_id", "hourly_rate"}),
#"Added Custom" = Table.AddColumn(#"Removed Other Columns", "Custom", each try Table.FromRecords({[hourly_rate]}) otherwise #table({"Standard"},{{[hourly_rate]}})),
#"Expanded Custom" = Table.ExpandTableColumn(#"Added Custom", "Custom", {"Standard", "old", "new"}, {"Standard", "old", "new"})
in
#"Expanded Custom"
How to use this code: Create a new Blank Query. Click on "Advanced Editor". Replace the code in the window with the code provided here. Click "Done".
That's not how you normally parse JSON, but let's ignore that for a second. You can use Type.Is to distinguish between values and records etc.
Hello @lbendlin ,
Thank you for your response! I tried using `type.is` function in M query but I am not sure how to use it as I am still learning M query. It would be great if you could show me using the sample data in this link:
This kind of sample data is flowing right now through AWS data source and I have no other option than to parse it in power bi.
As you mentioned before that my approach to parsing data is not proper, It would be really helpful if you could tell me what is the right approach to do that. Right now I just want each of the columns separate and if there are any subcolumns those should have a separate column with the main column prefix to it.
Looking forward to your response!
Regards,
Jayant Mandhare
Please indicate how you want to expand these records. Do you want them split into columns, split into rows, concatenated inside the cell?
Here's an example of how to split into new columns
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("7V3pb9tIlv9XiN4vu0BaqJvk7ifHSafTY3eMODuN3cnAYEuMzYksenQk4170/76kjlhiPZJ1kZScCgaYtqSqenX86h31jr/97Yf/+/jDOJ8t58l4eZNNPv7wnx9/wIgy9PGHFx9/WC3S+bdPCQvF+tPxNEtnT78mfP1ptri5S+aTm/tslt2v7tff7b5YLLOHdDa5eUge78um8/Sfq2yebjtY/yq9f5jmj2m663b94ZeiUT6/ma3uf0/nTx/f5av59PFmnizTTQ9bcnfDlN8vnn6++3iST6fJ/Ca5z1ez5dPXW4KrrXYf17VK/lVpReODL1ra/XOVzJdpOY3quNIPWnpKZrNVMq3rZvttTR/ju3T8udiWbHKzzNcfv0xn/0iKuQd/Sb7k+SJ7EVy+kn96kyyXxUZm+aymr5tkMpmni8UNbvsBqfvBOFs+1n23WO72Hvjyj+zhZpxP0oMjmIzHq/vVtGi2OV+bE7P36c3koMv9bypLu/9VdUHXIy2zL+nuaP/5w99f1KEsojLKGEUMRFnYBcow4pjGYXT45Twd58UYs23/6PDbNJnPntb3bHs8aqC6/Xi32YuCpHQ23lvnKpaPAMjPAcYesp1AluFIhmzBLjEI2bgZsiDLqwNhEwZrAIjKfwJFEW6FIvZY7A6Lb2eLh+IeDl7/+iH4uEKIiOBqNb3PZ/n09vFFcHXmwdoRWGMArAzDUmwLWC2kWNeQZoQg4iHt2evzQywB9E6MCD1xxIZIYM+EB0Xsu/cffn53dfb61dvzHRO+vio+vA4uy8/e/vo6OC8Y9Ov3wcXFlYd3f/AmoZn07OHt4e3hfVzwFpByvLWLHqdyvLO2eeB6Sfo7wOL2ocRj0WPRY7EvLEYCNBpHIYRFiroQe4vheEyZaERu8zvP1VUNelsxC0IWU+5R61F7zKiFrMcnhtrzd786Ra2HrIfsEUM2BOxLHrIesh6yxwtZ7ASyyGPWY9ZjtifMEs9mPWQ9ZE8GshgRiM1GGIYs7QKyjVBtQmoNTNdGY45DRlsB643GHSL27avzF8HFxblHbifIJRQyQyEMPqpSdjLIjUTIQ49cz2t7QyxBBP2I0Y8ID4pdEsFhdB67Hrseu0ePXVhi9tj12PXYPRrsMsBAxTkFnZ9od+Hrzl2kOOXeRcpj93ljFwiKJzyOThy7GKnwXQJil6JjyG/xHOD7If1XsgjezZd3+UM6ycaL4Pohny8Xu5iB9+ld8ns2zQpMFYAOzhaLfJwV27Aow3SDwKN/CPR/55wbc4/+b92Q3Wq03gCUEL69Nz0b7x/IsRx/EMcYjPQ7ofcmhhkx1Z4ZPQYch+hIkGzFx3/LxncFkw6uV/PbbJxMCzaeFox6mi2WC59RozNUUwHmhRMEgrXoAtW4AGFMYtaIbu/4cdAqonS0vWOPHdcet93gNgSM2XWZ5rphxz7T3PEK1VaQfVMMm8yWaeqx2wl2GZSLlRI4qv6URGka+6QZw0L3/P3bD2/Pzy6C87P3r4NCMLr+74sPZ79+uA7e/RT89vb857cfvCTdDao5kg1dXj/2uPba8QljmoYSppmIIOWYk2ZI9wFWjCIq2o3SoefAXt89MSQKwWWZGeEYcrxkLXYqWZFlURT60KNnh8Wzn6+CH4PrZVpsQHCdzW7vfO2DDhEK5afyCPUI9Qg9FoTK0myBUAohNDRJIKdY3Id45ydH8LlMlnfp1+BqnhWX1Yvg1ejdqNAGnYTuccyCcHlXYHOepkvQT0oZUO/z4ovFsjwTDci6fNuGLRZRFB41wOS0cCEBMzR6fJ0Cvt4ln6fJbBK8zGfpzqHwlzybwXjQAxhjiEbBb3k++VqcgBfB9SpbpgGGHJw0oPZymuf3n7J0Ogl+zqbThQPEkWNGHJwfikG+xc8fcrwFc6WrxUngzguAHaFFzhkheAS9O3YJFu/+6kx9mnxJCslvEvyU58ug5FRns8/TQhK8ciABUhIjHvw2CjAJLrNpGrzPkyc+he341E/JvNix22U+c8WnniI2jxJ5YIIl3rdo6KHnoffdQY8B0MOgt83zFxGfA/Q2pRaT+WNwNp2m89vH4HyeLctn8RJ9wXky/6asXU/T9GEv6MsemiEPXibz8TQpRs2K/093sCSIW8Hym5HEmeJ21KYSEJV0+8rnUfmcUNmISDcM06OyU1T6FwKPSo/KY0KlYJFnlacKSntkWaGnES5tYDk1nHD6fb4FPAeceOb1TJmXQF6i9KD0oBwOlLI3dcwRnJGrpdwDUMiBhiiuhCh5X82TB/53JrWuM+yguMcMOyIEMuxwAWfK0kYlojimyKPyVFGJGfLJr4aDJhAIGIImmGMIBESYiBi14pI7BGZE93LSfI/49NDsV4KVXa1FTKBo+5ZYeyt3mqPQKnGr3yf3fp/fN1jAwtcczk1hIFlGiPtC9KfMvCLkhcvhhMsIDGI4Fnh6xc9j8zvGJljN2mPTY9Njc3BswkEVHpsemx6bw2IzIrLBlOzgdAhN0mKgOY5kiIaq6HEYiNoqBPjA4OPEbX9ola2pMQfdvlsZqXEVABrRra+QZ7cnyG5LI7Nnt4OxW9nC6wHsAewBfCoAprINOOYMLMPTHYCx8B5Cpwtg5j2EhgSwbCiOEIeKy0dhF/h1rfBuastjLHxJj0FV3p/yabK4SyZp8Jdknqb3PkFqhxiWY1VChCAM484grOh65NHlBF0fsnSRzm73Kmvsh6xcj85HrVg7L47ANF0E1+O7VbFlywKgo1dgswME4pij4Oey6X1wVmz6KrXC5Ovp/dc8nwRXyfxzIz7fXrQhVKDwqKNXIqikNGIYxOlpWJc3zDYU21x8vqR0DzcCFV5cPqgmjfsUlwEMxzuwegh7CNsw9e8Mvf1hVo5PCwVYPiBqCeU2NVExxiMbG7PrirN4W3DXFWaJGWjJNnR3eNwSpoZcwj3vHY73yq+9GKEYkp87Yb33/yh4OuM1SCw/2fH8Kt74UfhTHAnWrHjkq3SWLdLg7OFhmpapYF0YlYo9RcH12W8fXl9cvA5eXvwV7FMZiRf5Ijib3aZTMG/nEyjPofKXB7CMERLCAJu9IZIDxmMSQfkYupOFveHJy6jP6UGGQ1aiHrmcB5UHVR+iIxoYVJ5ReUx5TNlgCnh1/JbP7ABT8elYQilD2xQN3nNgIOReryZ3aToP3qzm8+TeiYYXkTC4zlfLu+DNPE1nwfviiM+D9xMriL/+kswWX7LpFHoB3Xu4/LUN7iwMt7kwjlXNk9PuCY6hSiR4a9E7cqhzwQXlTBwac0Cos+J3lFOXOYc84j2v/hHxXnk18ARCQDdd0Z2LkFMA0xLCKgCmrEQ78/j1+D1h/AKBbqGAI8ZPR9gOQy5M3Q7I1tdrWPSythDViESnEaL6Pp8l00nwS75IH+6CX/Pyv6HC588Z2L3BWUCZkxiYBhBj0QWey9BpzkOLdNfj8giA2G5FtOfF3eH4MhvfJek0OJvP7vLp8g8HJd89hkEMQxmWGIFk6sFtysfho9eaz+EkAObx1BGeoKxIbOuYdbqutTEKY2Eo4x4BZp8DYl+tisWaBRfJ7LY+yMVD2AGEwQAXD2EPYQ/hU4Gw/KgrOPTSE5+EnRghjAinCLdHgyNYcnbsuctbMFxNef+8YOxR2xFq5ecdgsEyL909z6qqouQY7LZbo9qJw+n8ylt3ukKUnAeUstA74Xre5JGkh6QQfuuAmBNmnQiVhJPaqC2YRz3VBPO42vDsEVcDFw7rsxOczQowBGfzRTpLVtPld5gRaICgyRA2q0Ku720lAE1fGjGhYcSCRt2u0rbbSkse2XocExOfcqR3tgnbUkFTTCdZC7QYZnQM74snhSkPp37hJNs145hB+hwZHE0eSk6gdJbM81nwc/7p030y+w6Fzf6wJVsfC1ZFIW+2uKMc0IxztA3nNEuwc3btVMIM0WibG2FYHNP4OSD51XwUvPuaZIvgIp/cZR7HHeFYtnmWOIY82jrD8fFA+DhqID0X+F4m89t8mi2DX5LZ53Saf/Ug7gjEcqRIRLY22Iq5pxsMRzGNaoD40+vXHmptUCMVD4D6XHQNhQKv0+mn4DKdrFNDv5nnqwePt47wBlQwCgmY0xnxLgDXyDGbGGYNSDeRWYwg0so3vctbh1zzepwvl8G7+dyN6oojhIM3yWQxSQulOLu9+5o8WiH6ZTYv9uX2LrlvxPbZRRu6KSf0qNMfALW0IxpC+WO9L8DzwJ5nlh0hSU4kUsYAnzizJEgw05xBeGuhOWrMYiGik8Dty3mWzIKfpsksuXVl8y2Uk+Aqm+bLb/L0q/n6uHveqYJ42TYcIQanDurE+QcjJkKObGzD3vvgKLGezOePwfvk8ffV3D/vdAlh2aIkxLYOSiV3UCfe5QiVARw6UjDeehcOCzLyLMKdy3wC6XSaBtfFns4KldTDrCOYyYak8vUFDJ6kHbFKRAnDvpTuc2OVHrLdQDYGil8zBrnWdoTYACMqiIi5h6yHrIesCmTBrD0UjEbpjMsiiiLiIesh6yGrAlkwggWs39cZZAmmNPaCsYesh6wSZMHgFQp6RXQG2RBF3EPWQ9ZDVgmyQIBMr3JxUArGjBMPWQ9ZD1klyMreFCWX7dH+hBFljG/D6DxkPWQ9ZFsgC4bKgY+poY9D9VjyWGrAEhyuBvoWdWfKxSTy7M9D1kNWCbKyK1HJ/uA6Rl1JrCHZVSn1kPWQ9ZBtgSzolsSggNLuuCzBjHnIesh6yCpANkZgxk2w2meXPg4R8j4OHrIeskqQBX0cwPxkHcXJNEK1Cak1MN1VTiGmkXHiGHz4nwNm/5oVCz1bBi+T22kx/xfB1Zk9jJkQLDjPl4uvZaXQi2R2PAFxjBw10kHXCAbHwJ4U0rFpjSSPdEdI/99kXByUx+ByfJ6DyR30ME6jkASXye1tln5cFUqY+Dca/9ciuJomYzu0v53ns0kyhTrRxDpGR4P1w1NdfFBcjJurko62Evks/Vp8wtGfDUdtv2EowsOmLNw0Bqa1167E44/r/+01na2m0z/7J7bTEeNTWh6QWIUR2UgmVG3MiMUR3LjDBRKHIxafxAVI1Ajmhd5Ybc7XLzoGI7O4l1GLFY73muJivwiP+J8NnGt/i54qTeyGJusSYGpD80OqcenE1fH+RuFoG13b25GKDTEnBI6qG1vmAlBaXS6fiXW6tT8BmWOvGYHgqj8aUbkaqo263wpwRJVmVYT1QCoeYbZ/akjxt0o7ckipUD1tPAwrp42HqGN25JpYpRG3+QC2BxXjEWf7owKgwGFxyzEzJhZjIUbbalzbi51HZXcqxHKz41o95qLzfZS4JikvWZWWFamCq3I9zIWQrjgRlvFxKsPGo6hyJ7c3Eka7IVOJd/dwdxsi+r+w4CEV2uHRtsbP9rAWf1OVduRQfOhhhrS6k6EaL67eAN2TGva+/SEekX1BMCKjWGUbQ9KsHwDXcZVr9DA56CLudsTQCEwRG2EKEFq1Te01OZQRyaGyoyohqt3ZBOH48JSoTsuMEcZktH0f3Co3IW+bHD5EavFJpKz+EUlMLIV/pKgODU5sSaoinWJfgipuxbhbMFSHLE0RpGVxDtfFnOGui97hHxFdF71TIbYiJpBSoTZq1zJDKgldhfLetWABUKnQKI5r7ox6RfRwYu3XEu6dKcRx7bwGGVRFGalp/W1c+almn+6DPdnsSC2hmNaIIFWz/16b8ys3a7kjbt/YXTMP3Mnc6ywbDee3xtLZsFpvZ5/SYnb5ahG8yhZpskiD64d0nCXTbLFcBPmn4DpfLe+KL5bpfBb8li3G+WyRzV4E16PzETBWx8vV/Nq3v3xA4+qz3b50zUQU6x3NEFYdal61aoUlZsNW9pmJxlrilskBWrjGRUsc8Y9uJoQp15lMdNSTEVoMEAm786J8AFC7AmCkW1ZFqm91hPuYFYtaZxVSEx190Flx2j4rc25/eAtvj4XCk9C+RrGxfao+MUqWUolaE/6B2rhBnalMb65PU3Vx33Qy0TqpRHOiJI7pdzFR6fCCTwPm1hDJTt/L6hCGRjRqWB1gliI+fOXVWNBiFauwJnjzbPw01RaHoXqu6MySbkeBi26UZiLzGxRV+M0AJMQ9k9DtfqI95XHfJ6tWJdJeskJEEJslqzRtpY87PW7W/RAWWezYbi1CR8eHcUfT4jbnsE4OHIQYN6CIhichxlzNiNvd+SKGF2RBAeuXgu72gfR0PYZDXo/EzTVSiDkhP5bLsZD63Exq+OuIcCYcTSYcfjLRxqHPBCTE0dGIbJi4o1WInGwotZIgHa+rHTFO1pWGEXWysAxv3XoHnAxjoZN9YSxev5Nb96N6FXanMSmT0CSpHhEx7sBnR4yb88odqVlMKF7Q3YkPjjQr7uR+5q7mtE4DYt+PI9GK29ywrvc7cjOnkDrqx8nd4kQlxwhHVIwi625YXL5DD3dDEU4IHxHrA0eI9ZqWpnA3LupGw5eHdMDRiaOoP6PRQy5CPhI9E4Al78O1TbJnWUqmwuzV98mea0hElQxeKrhmnW1ulcOV5aa94RKXlX0iahvl9rgA3qr8iMgw6yuuhoaU1dCi/icl7TExnhSV+nLmEqlBhRyvN8hpkcngQ1xyDsnAyJyMSCJjbZN01JfpJhGZB5Ruc5UoW53+omqwCEYbQc+kt3KJJC9vc9l8PbHKJhTnw5Q6ClAniIVXpPEuSoSUV5hRT9IFJqhhT4K5OqMAdEqDac9GYyoAqAzzNgiQstbCja5Wc62QhkQOs7d4hWbQZbQepPcVZgRVAyyHMqoxIl2pg5FCaZUURgTpW4lnMkunagKOU8liY+AcXtAqVR7pgAhz4yswrZ2aZmiFNdcOoSXeBPFEba/w+26B0pZAroyoPTMKeAtSEo62RQTsNhKYrLFCbs7nRFhjFzDoK6w7SWYHyUL+likxtLjYUUGOQD8M5etzg+7aztrDMxqWo70xOvTjN3BXsbeNt7godTuJzmxK7WQzG7qxKIR8m2MTWe28A0fF9puyPTbX7vjaaRC7SbR4QXc7CUzJQMeXWN4ddm4dzk6QsJyFjWxmTbw2hgHzVWl4EP24VsKe561xgWQEOTMqOEE0WtJaV5cSO95Y3s/dqImtpBv79bW84bcObIsm0Zlq3Up6NPTAg3iSKvondD2JeMB93yYuaUh3cJ0u81nwU3KfTR/L5Aav8vEyL3u11xVtARcTy4tbmclo3b1YYMJGWFhMzUHinBZvLVUKGk7Gwe8vk7t5ms6Cy+Qf2eRFcPlqmBNtK5hRq0vYkWxjNwkbpc6RWE+YBf1M6Ymlg6PT1QOa8sCmZ7Z8ldJD66t0nn4Ozu/S2e2AWOV283bj1dpih2+dxE48t/A+HfzCoXYbMZzgSm31cNTde1Yr7TYCArU8dnaOvVbzriaF0aWcDEe4DVsrKRdDkW59WCyOqmIAcQeTJjZkCyt1nq7dV0yUIsurPLQz3GDUWVBi15SzwUxOsRhkYBxt4xhM5cbh5acyKQ7CNpOwC4xWdBRongQ7rCyiOYE9jxqXXgVMpcqHopOL7hnF1u1lM7026yWQN4mTvCn65sIjndCx7Mta47ejQ1+DAZezV02m82nY0LJ9WdWMp5H60N7YOj8VmyfKHncUwwnbNHxboUfKyOKdtZpAXWUWTIK5vscE5lJlEor7e6+v5iU3whbkZ68PrWri1rIT/dWUjkXY5GqvQof+4dQNAIGpAJiIwZrCtZY05iKgm3OHNB1aqP3CEqrp+wjRUS0yqd+BjHsutEGDJdyXt5r+Fjdn6VToQC6OZSSsyPeI9lREVL0Jke5x5XKETNgYLggmTZX9+fXfHsDQLU6aMwlB1FTqUEaaK0JCWknev44T1SMBuou0F0TemiflWosaKD++TgcxqQpgkeZUyvgmI6ZdERdw3Oqu7CzFuRN5QWIomGgdpWKprZmAHF2lPQuMR+HhQfxWnEZDBoUizghjkeaBLvNcVK89TUpAnddUGm7PDtr/JHQokdizvuMRBUhpS0sLkiL3Emvbb0EJjLWE2apRw7C24AJsE9dlKBIlBjK2rDeZ1kQwsM1WD7uJ0CSrKj3bqYgDyY8DegrTlnGIaKna104II/Ch0qCiWhLKZD1kltCjnw6tMtetYGMgkjSmIISGlrV3QrVXj8mKM9M1jlG55jvFSoWDnNwMNKrEJfMyUFkTVJDqELYEbkOPG4De7uKWMuCErKZEqQYhonrp6sJDDoY3CAuzjL51gnOOK3VzeKESEc1DFoZRdUEKrSZSyvkGIKWMu9Q7EtzeHhRROGBThwpJWmSWnmpiV9WsO39rPoKiN9qt/LvkWzoL1Fz1qL19CCl8Gu0jCWyaDmFSB0PZtyAriraBG7p+aJ+XT4G5igVACKY7CQY8gkXI0BVIX1mNqvLmWnDT3gsSAzbc+IkVNIWLrO7vk+D1fTq/TWfjx+BsscjHWTHbxYvg7Ww8OujybJxM0vtsHHxcIUTEeX5/v5ply8e99vulNTfttdajwk9wqGkQw5RKmZtECAluOi+S0CR0XzTNO8Dre9y8vXsHTJ2hBxvbfSL2fuLNbceO3avuyoMrFmnoYOgBTxqxRThx7wmpObRV+8Fot4vFcDS4eQ8RolYCvrIrJSCq1Hkta/iiDrTwtC7aDjYGKWllymMzWGlR9h1Flu0LSY9ZdUAtSi3ZrR2rKTql63dr3AHvwjaiPDhz7nM+YLSX8tBWgquIEHNVaF137IiFQw0d2xxzHIbCtG2h+cLlZhWbc+c5DRUHDgkuC00MMXJxnw4wrvNCDKqR3hEbZJ05nAFbrXE40GqFrmt1qA0boY0VrI9hwaTgfXIbmQDtk1Jf3MJQLFettg1I5XVhTQOQPyANWH8LgczHOLYrK6q7BpCfNNEW9+Vuyk40uwDeFw2EZ7kf25NlSETVjZb1x3MxZXUPxv0ML9eV6ZObYSq9K2BMtYVEIBgCg8EQen3YXTJ9CqvdEK9FgSjEc+mpKYy12Y0o/lUe62lxHPpaSCEqr6jF4HoKD5Y9prUXM4b4DeqX38g0rCnoayfkl+g+LyZ5dCs8kT5Jr2HPmvtfdS6umb9S5i+9ca1NqkR+dLfbPbOSJg0JDZuIr7/Kezk9/EjH1+wklGRlgcL+9EZScjEh9g9R+Ql3W9+xMRhqbbNyhwFVG5gjFMhxR0ZviSTG0knA7uv4aAVYqN0mXY0e6QojchdWB0lbGKoZX6sLxdjRpi4IxRW9ORShXhdQFBV1nwKsmQRJvNXdDqlynaXW3kUFqSHo1yGC4Sp72Hyid6DqMvMMtRdtsQQnNBXtYwVFD+zlI7WwlQ6yH463o09bSF3xKu0+qmwbC32IcmVVBAolqTogG8SS1IyvNwf4ytTqo/t6xPqja3UhGSp5IaJqdVETza2vUx9fdt7GWUsB01ZXybq/3oin1gdHyFZRbsAWQtVMO42kSH0IXTO5OHHxb+3z4/I4lv31pRWHDnSh8nWrYtaN4xCoO93QR1RN6LhmNP1tojR+MbpeB4CNNOJwOouGbuJIFhNwtKnqrtXPupBoRTFku1RLB8E1N8lkMk8XixvcdMNTElwn8yQ4LzjJEuplnC0fGzp4Pf0cvJnnX9Lgr1lB9W0K9bFYNh/ztxdQqz+yh5txPmlqWDKoUHcrpCU0S5LQkCCvg9HdwKF+dPViLdNxfh+8SpP7bfkHB+NLXaikmdRoGY4wa7jGnTyXtiRcXtPgwGPhxTaGdpl9qZ6Q/eHUFgZ3fBLhMctsLyZ7cfD0H+OREJoBeUxRRlPICVlOAwMKnkJT4tYnTmFErfPe1ljPOyDCTGG6wNVaZ4lwPN0oFk5l1ELjCG1LiymtTwTWhGy/RjANwVhxt+tKQuFW9qfW5kYc1wvSqpNXbCgiw1WLsRgx01EPXvCwqFyPjZ4sQOA57Fllkhu2xcXQjaHDshqwhdfFXtE8ZWDJ2dgOiW/cLDllwqaIhNrISole1TK8rjMIGbXVOCKlcmNKMuAYpb7Osk8T6P2qNC51rPAqDQpHPCk0hbJXws3klKOqh1iIUUgOxgQ1YTi5r/mFI4nUPWyMlFEuVj6EUI6VbQ6GnqnW2lxzKdt81ILBF+exSbPQdOTCkYIHjqXgGlazslVTTzb6DUlcmzl+OlMimWocZyA1DI+cu9gokK1znMNq8jxT/0bLmpVdxNjDubWNMVgbpuHMsuaY4NCxKwF9yp9xlOrfOvGisrB4NAtL1a42y9tYKSmbYSr4FtSo54CHMsU6XOkQUzaKO+d85pYFWvqWKrD51ttYDAfTNtqMKscTEY7gDLVO15/HbMSb7BvP67ipTrfTsubKq9RooKgrzK5QTOFJc+5SSANGVVVh5aYaF7D8VC5UldHquBipnitpTAL6VyiMSehhLmWtmVJOgAd9hVGp6kwJ4J7PvkXmNzw7/pLcp4vgTfqYztcvjR9nGKHgfTZOg8tslgbv82QSXOT5Q/HN9SpbpgEtDvjH2YfVYpxM83yRvAjOLoKAcobEwfCVnmu6/dZnTYdGyxbBfoEaBU3MtjlUtF05HdX0rrTTk+qS0II1T1yoK0hLvyrGPMgdXIY2q19VpYbFK5dkXKNYQoNTyRqF9et0lQCAUtsbq6d1ySaUlo9wveUzZE7SuIyoi/gRFtXm2zRcSmNLBQmr4kSj0UVOeV/GTPXAz6mxgbhkS46CSi0vk7qijQpFdnT0ZVotnKm+ysYN5WcKDZlJcu78llavmasftLi6fBP8GFwlq2nwMp1/zr9myz+2XkVdn0158hrXCDB5XpNgRX1sk6Y6kHKdQ8W4llaDRys05RqHNbVrF3ruNLhFYotLpKSia6Mtlbl69xiSBh1qTIOGGqco5OGIOMNNjAoVoHOXqOObbQNLuEqW82z8OXi3TuUfvpxn6WzDBfaW4Oz19c3rX8/f/8/Vh3/f/O6pWfmv0nT954tNcYBwglM0/pTglEQpSz6R3wlmqBBXP0UCs0n4++ZX/2F4l/WyLVGMR1HoalswChEZde+ZV60epnMOQU1UbdBa65XCuEB4aV+eAubeqe2qt6by3PVMzQ2yAlVfW/rwWqZy9WONIxXJkV2cK2t/1bEpG6lZkKoNOVE2FJbJuavhX7uabX2us87BsICPhdtJXLDL2F7CpNpGGKPrvPGBQOdiN18x1uq/pbhkjGpXja0YYHrRXyyWSjazDbRUQrUGq+WpitxkEiv66YGHSfWhRpvkgyobK5UZ3DhHKa6T7Imrzox41TEfM8V3J3lUdWc1wPGrg0ozKkST/gfFqo74g3j0mRsta4tNa8HVPChO9LA4siqgbnlXTU+nNq66eTIiVRGZYtS56AYU1lW/HqQ34jLdr9GwGIrvBts5Yq0I6bLWEEgkTZRvYcxG1FindiN7rWkw92Yh5tUIDB4MGTVeL84waX7CUjwkXI3r2AmaTKrxLdTvDIGrCl9M1gqf0sjmWltNBWsDHLqqUGxxKnU2a/AlY5q1sfcNCWKTV+cofSdHUOrrdvdJFNNNy2F2T2VUyYhUdZRpNOv3USG5nei1G4UizVBJF0Yp03tjfjdf3uUP6SQbHxQEzj8F75LP02Q2KVOfzMocJ1KvShlUGEM0Cn7L88nXZD4Jzr6koxfBxncM9nJry6jycprn95+ydDoJfs6m04VJQpXLt4YJVVhEketqY+2nQiccx5WXmdCW2w4vDNUqr8DNphHc8n0vFOtnoXA4KtWrtoVSjSWnxQ0fDcUf2yUdTLk6pzPnVQdyc/GnpriBVXNzQoPL3jk6jLKqm/HOzQyQO5HqBrkBeR9BmFxyY1QbtXr20Y8YqV8MksOrugGnNnmd8bgGDZkpsWCmu/bxorLR3/8f", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [Column1 = _t]),
#"Parsed JSON" = Table.TransformColumns(Source,{},Json.Document),
#"Expanded Column1" = Table.ExpandRecordColumn(#"Parsed JSON", "Column1", {"contract_id", "user_id", "client_id", "is_hard_minimum", "is_stipend_payment_required", "employee_id", "vendor_number", "hourly_rate", "stipend_hours", "stipend_dollar_amount", "minimum_hours", "minimum_dollar_amount", "maximum_hours", "maximum_dollar_amount", "maximum_quarterly_hours", "maximum_quarterly_dollar_amount", "maximum_annual_hours", "maximum_annual_dollar_amount", "check_paid_to", "check_paid_to_attention", "check_paid_to_address_1", "check_paid_to_address_2", "check_paid_to_city", "check_paid_to_state", "check_paid_to_zip_code", "is_accumulated", "accumulated_date", "accumulated_hours", "accumulated_amount", "is_active", "employee_record_num", "employee_earn_code", "vendor_address_sequence"}, {"contract_id", "user_id", "client_id", "is_hard_minimum", "is_stipend_payment_required", "employee_id", "vendor_number", "hourly_rate", "stipend_hours", "stipend_dollar_amount", "minimum_hours", "minimum_dollar_amount", "maximum_hours", "maximum_dollar_amount", "maximum_quarterly_hours", "maximum_quarterly_dollar_amount", "maximum_annual_hours", "maximum_annual_dollar_amount", "check_paid_to", "check_paid_to_attention", "check_paid_to_address_1", "check_paid_to_address_2", "check_paid_to_city", "check_paid_to_state", "check_paid_to_zip_code", "is_accumulated", "accumulated_date", "accumulated_hours", "accumulated_amount", "is_active", "employee_record_num", "employee_earn_code", "vendor_address_sequence"}),
#"Removed Other Columns" = Table.SelectColumns(#"Expanded Column1",{"contract_id", "user_id", "client_id", "hourly_rate"}),
#"Added Custom" = Table.AddColumn(#"Removed Other Columns", "Custom", each try Table.FromRecords({[hourly_rate]}) otherwise #table({"Standard"},{{[hourly_rate]}})),
#"Expanded Custom" = Table.ExpandTableColumn(#"Added Custom", "Custom", {"Standard", "old", "new"}, {"Standard", "old", "new"})
in
#"Expanded Custom"
How to use this code: Create a new Blank Query. Click on "Advanced Editor". Replace the code in the window with the code provided here. Click "Done".
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount! Prices go up Feb. 11th.
Check out the January 2025 Power BI update to learn about new features in Reporting, Modeling, and Data Connectivity.
User | Count |
---|---|
144 | |
85 | |
65 | |
51 | |
45 |
User | Count |
---|---|
217 | |
88 | |
81 | |
65 | |
56 |