Advance your Data & AI career with 50 days of live learning, dataviz contests, hands-on challenges, study groups & certifications and more!
Get registeredJoin us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM. Register now.
Hi everyone,
I have a few tables brought into Power BI via Direct Query with Spark and I also have an Excel file. I was able to connect these tables to each other and if I create a visual using columns from the tables that use Direct Query, I have no issues. But if I combine a Direct Query table with the Excel table, I receive an error message saying: "OLE DB or ODBC error: [Expression.Error] We couldn't fold the expression to the data source. Please try a simpler expression.." Could you please help me out?
If it helps, here's the entire error message:
Feedback Type:
Frown (Error)
Timestamp:
2020-10-13T12:15:55.9988854Z
Local Time:
2020-10-13T15:15:55.9988854+03:00
Session ID:
03efe329-f098-49a6-83ba-604aa2d14f0e
Release:
August 2020
Product Version:
2.84.981.0 (20.08) (x64)
Error Message:
OLE DB or ODBC error: [Expression.Error] We couldn't fold the expression to the data source. Please try a simpler expression..
OS Version:
Microsoft Windows NT 10.0.18363.0 (x64 en-US)
CLR Version:
4.7 or later [Release Number = 528040]
Peak Virtual Memory:
39.8 GB
Private Memory:
1.68 GB
Peak Working Set:
1.81 GB
IE Version:
11.1082.18362.0
User ID:
831f0b8e-b85c-4bb9-9edd-716285d4d14d
Workbook Package Info:
1* - en-GB, Query Groups: 0, fastCombine: Disabled, runBackgroundAnalysis: True.
Telemetry Enabled:
True
Snapshot Trace Logs:
C:\Users\hagherlacher.o\Microsoft\Power BI Desktop Store App\FrownSnapShot571008031.zip
Model Default Mode:
Composite
Model Version:
PowerBI_V3
Is Report V3 Models Enabled:
True
Performance Trace Logs:
C:\Users\hagherlacher.o\Microsoft\Power BI Desktop Store App\PerformanceTraces.zip
Enabled Preview Features:
PBI_NewWebTableInference
PBI_v3ModelsPreview
Disabled Preview Features:
PBI_shapeMapVisualEnabled
PBI_SpanishLinguisticsEnabled
PBI_ImportTextByExample
PBI_qnaLiveConnect
PBI_inlineExplore
PBI_dataSearchCuration
PBI_azureMapVisual
PBI_dataPointLassoSelect
Disabled DirectQuery Options:
TreatHanaAsRelationalSource
Cloud:
GlobalCloud
DPI Scale:
125%
Supported Services:
Power BI
Formulas:
section Section1;
shared #"ap_supply_chain_sync_insights scsi_global_int_fact" = let
Source = ApacheSpark.Tables("https://eastus2.azuredatabricks.net:443/sql/protocolv1/o/8755884253711570/0814-081746-have977", 2, [BatchSize=null]),
ap_supply_chain_sync_insights_scsi_global_int_fact = Source{[Schema="ap_supply_chain_sync_insights",Item="scsi_global_int_fact"]}[Data]
in
ap_supply_chain_sync_insights_scsi_global_int_fact;
shared #"ap_supply_chain_sync_insights scsi_material_fused_dim" = let
Source = ApacheSpark.Tables("https://eastus2.azuredatabricks.net:443/sql/protocolv1/o/8755884253711570/0814-081746-have977", 2, [BatchSize=null]),
ap_supply_chain_sync_insights_scsi_material_fused_dim = Source{[Schema="ap_supply_chain_sync_insights",Item="scsi_material_fused_dim"]}[Data]
in
ap_supply_chain_sync_insights_scsi_material_fused_dim;
shared #"ap_supply_chain_sync_insights scsi_analysis_tab_int_fact" = let
Source = ApacheSpark.Tables("https://eastus2.azuredatabricks.net:443/sql/protocolv1/o/8755884253711570/0814-081746-have977", 2, [BatchSize=null]),
ap_supply_chain_sync_insights_scsi_analysis_tab_int_fact = Source{[Schema="ap_supply_chain_sync_insights",Item="scsi_analysis_tab_int_fact"]}[Data]
in
ap_supply_chain_sync_insights_scsi_analysis_tab_int_fact;
shared #"ap_supply_chain_sync_insights scsi_gcas_fused_dim" = let
Source = ApacheSpark.Tables("https://eastus2.azuredatabricks.net:443/sql/protocolv1/o/8755884253711570/0814-081746-have977", 2, [BatchSize=null]),
ap_supply_chain_sync_insights_scsi_gcas_fused_dim = Source{[Schema="ap_supply_chain_sync_insights",Item="scsi_gcas_fused_dim"]}[Data]
in
ap_supply_chain_sync_insights_scsi_gcas_fused_dim;
shared #"ap_supply_chain_sync_insights scsi_gcas_weekly_int_fact" = let
Source = ApacheSpark.Tables("https://eastus2.azuredatabricks.net:443/sql/protocolv1/o/8755884253711570/0814-081746-have977", 2, [BatchSize=null]),
ap_supply_chain_sync_insights_scsi_gcas_weekly_int_fact = Source{[Schema="ap_supply_chain_sync_insights",Item="scsi_gcas_weekly_int_fact"]}[Data]
in
ap_supply_chain_sync_insights_scsi_gcas_weekly_int_fact;
shared #"ap_supply_chain_sync_insights scsi_material_snpp_dim" = let
Source = ApacheSpark.Tables("https://eastus2.azuredatabricks.net:443/sql/protocolv1/o/8755884253711570/0814-081746-have977", 2, [BatchSize=null]),
ap_supply_chain_sync_insights_scsi_material_snpp_dim = Source{[Schema="ap_supply_chain_sync_insights",Item="scsi_material_snpp_dim"]}[Data]
in
ap_supply_chain_sync_insights_scsi_material_snpp_dim;
shared BOM = let
Source = Excel.Workbook(File.Contents("C:\Users\hagherlacher.o\Documents\F&F\New All Perfumes.xlsx"), null, true),
BOM_Sheet = Source{[Item="BOM",Kind="Sheet"]}[Data],
#"Promoted Headers" = Table.PromoteHeaders(BOM_Sheet, [PromoteAllScalars=true]),
#"Changed Type" = Table.TransformColumnTypes(#"Promoted Headers",{{"PERFUME-GCAS", Int64.Type}, {"PERFUME-NAME", type text}, {"Perfume/flavor classification", type text}, {"CUSTOMER-PLANT-CODE", type text}, {"CUSTOMER-PLANT-NAME", type text}, {"Perfume price", type number}, {"Perfume spend", type number}, {"CUSTOMER-PLANT-COUNTRY", type text}, {"CUSTOMER-PLANT-REGION", type text}, {"TDCVAL", type text}, {"TDCVAL-NAME", type text}, {"Platform", type text}, {"CATEGORY", type text}, {"SUBSECTOR", type text}, {"SECTOR", type text}, {"PERFUME-PLANT-CODE", type any}, {"PERFUME-PLANT-NAME", type text}, {"PRM-GCAS", Int64.Type}, {"PRM-NAME", type text}, {"PRM Classification", type text}, {"PRM-LEVEL-IN-THIS-PERFUME", type number}, {"VENDOR", type text}, {"Buyer", type any}, {"P&G - P2P Vendor", type text}, {"Incoterms", type any}, {"Incoterms_Desc", type any}, {"Price changed to reflect Worms consignment prices missing", type number}, {"PRM spend incl. Worms consignment prices (and no NA)", type number}, {"PRM spend (no external perfumes)", type number}, {"YEARLY PRM KG VOLUME", type number}, {"Freight", type any}, {"Freight3", type number}, {"Duty", type any}, {"Import Duty", type number}})
in
#"Changed Type";
shared #"BOM (2)" = let
Source = Excel.Workbook(File.Contents("C:\Users\hagherlacher.o\Documents\F&F\New All Perfumes.xlsx"), null, true),
BOM_Sheet = Source{[Item="BOM",Kind="Sheet"]}[Data],
#"Promoted Headers" = Table.PromoteHeaders(BOM_Sheet, [PromoteAllScalars=true]),
#"Changed Type" = Table.TransformColumnTypes(#"Promoted Headers",{{"PERFUME-GCAS", Int64.Type}, {"PERFUME-NAME", type text}, {"Perfume/flavor classification", type text}, {"CUSTOMER-PLANT-CODE", type text}, {"CUSTOMER-PLANT-NAME", type text}, {"Perfume price", type number}, {"Perfume spend", type number}, {"CUSTOMER-PLANT-COUNTRY", type text}, {"CUSTOMER-PLANT-REGION", type text}, {"TDCVAL", type text}, {"TDCVAL-NAME", type text}, {"Platform", type text}, {"CATEGORY", type text}, {"SUBSECTOR", type text}, {"SECTOR", type text}, {"PERFUME-PLANT-CODE", type any}, {"PERFUME-PLANT-NAME", type text}, {"PRM-GCAS", Int64.Type}, {"PRM-NAME", type text}, {"PRM Classification", type text}, {"PRM-LEVEL-IN-THIS-PERFUME", type number}, {"VENDOR", type text}, {"Buyer", type any}, {"P&G - P2P Vendor", type text}, {"Incoterms", type any}, {"Incoterms_Desc", type any}, {"Price changed to reflect Worms consignment prices missing", type number}, {"PRM spend incl. Worms consignment prices (and no NA)", type number}, {"PRM spend (no external perfumes)", type number}, {"YEARLY PRM KG VOLUME", type number}, {"Freight", type any}, {"Freight3", type number}, {"Duty", type any}, {"Import Duty", type number}})
in
#"Changed Type";
Hi @oanadh
Did you use Merge or Append to combine a direct query table and import table?
My direct query file is from SQL Sever. I have a test, it works well. If you want to combine direct query table and import table without building a new table, it will change the connection mode from mixed to import, or you will fail.
You could try other data source like SQL as well, or use import directly.
I found a same issue like yours, and I hope it could help you to solve your problem.
cannot folder expression - data connector and PostgreSQL
Best Regards,
Rico Zhou
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly.
Join the Fabric FabCon Global Hackathon—running virtually through Nov 3. Open to all skill levels. $10,000 in prizes!
Check out the October 2025 Power BI update to learn about new features.
| User | Count |
|---|---|
| 76 | |
| 38 | |
| 31 | |
| 27 | |
| 26 |