Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!Calling all Data Engineers! Fabric Data Engineer (Exam DP-700) live sessions are back! Starting October 16th. Sign up.
Is there a power bi custom visual based on seat allocation? for example:
or is there anything similar custom visual to the screenshot above?
All the colours are allocated seat in a company annual meeting.
Solved! Go to Solution.
I got this to work in the attached file by just modifying the Vega spec you posted slightly. Note that I needed to add a "person" field in my example to effectively generate a row per seat
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"width": 550,
"height": 300,
"signals": [
{
"name": "dataLength",
"update": "length(data('dataset'))"
},
{
"name": "row0Radius",
"value": 280
},
{
"name": "row1Radius",
"value": 260
},
{
"name": "row2Radius",
"value": 240
},
{
"name": "row3Radius",
"value": 220
},
{
"name": "row4Radius",
"value": 200
},
{
"name": "row5Radius",
"value": 180
},
{
"name": "row6Radius",
"value": 160
},
{
"name": "row0Circ",
"update": "PI*row0Radius"
},
{
"name": "row1Circ",
"update": "PI*row1Radius"
},
{
"name": "row2Circ",
"update": "PI*row2Radius"
},
{
"name": "row3Circ",
"update": "PI*row3Radius"
},
{
"name": "row4Circ",
"update": "PI*row4Radius"
},
{
"name": "row5Circ",
"update": "PI*row5Radius"
},
{
"name": "row6Circ",
"update": "PI*row6Radius"
},
{
"name": "totalLength",
"update": "row0Circ+row1Circ+row2Circ+row3Circ+row4Circ+row5Circ+row6Circ "
}
],
"data": [
{
"name": "dataset",
"transform": [
{
"type": "project",
"fields": ["Person", "Party"]
},
{
"type": "window",
"ops": ["row_number"],
"fields": [null],
"as": ["index"],
"sort": {
"field": "Party",
"order": "descending"
}
}
]
},
{
"name": "placement",
"transform": [
{
"type": "sequence",
"start": 1,
"stop": {
"signal": "dataLength+1"
},
"as": "index"
},
{
"type": "formula",
"as": "wholeCirc",
"expr": "totalLength/dataLength"
},
{
"type": "window",
"ops": ["sum"],
"fields": ["wholeCirc"],
"as": ["cumWholeCirc"]
},
{
"type": "formula",
"as": "row",
"expr": "datum.cumWholeCirc <row0Circ?0:datum.cumWholeCirc <row0Circ+row1Circ?1:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ?2:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ+row3Circ?3:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ+row3Circ+row4Circ?4:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ+row3Circ+row4Circ+row5Circ?5:6 "
},
{
"type": "joinaggregate",
"fields": ["Person"],
"ops": ["count"],
"groupby": ["row"],
"as": ["rowCount"]
},
{
"type": "formula",
"as": "rowCirc",
"expr": "datum.row==0?(row0Circ/(datum.rowCount-1)):datum.row==1?(row1Circ/(datum.rowCount-1)):datum.row==2?(row2Circ/(datum.rowCount-1)):datum.row==3?(row3Circ/(datum.rowCount-1)):datum.row==4?(row4Circ/(datum.rowCount-1)):datum.row==5?(row5Circ/(datum.rowCount-1)):datum.row==6?(row6Circ/(datum.rowCount-1)):0"
},
{
"type": "window",
"ops": ["sum"],
"fields": ["rowCirc"],
"groupby": ["row"],
"sort": {
"field": "index",
"order": "descending"
},
"as": ["cumRowCirc"]
},
{
"type": "formula",
"as": "cumRowCircAct",
"expr": "datum.cumRowCirc - datum.rowCirc "
},
{
"type": "formula",
"as": "theta",
"expr": "datum.cumRowCircAct==0?0:datum.row==0?(datum.cumRowCircAct/row0Radius):datum.row==1?(datum.cumRowCircAct/row1Radius):datum.row==2?datum.cumRowCircAct/row2Radius:datum.row==3?datum.cumRowCircAct/row3Radius:datum.row==4?datum.cumRowCircAct/row4Radius:datum.row==5?datum.cumRowCircAct/row5Radius:datum.row==6?datum.cumRowCircAct/row6Radius:0"
},
{
"type": "formula",
"as": "x",
"expr": "datum.row==0?row0Radius*cos(datum.theta):datum.row==1?row1Radius*cos(datum.theta):datum.row==2?row2Radius*cos(datum.theta):datum.row==3?row3Radius*cos(datum.theta):datum.row==4?row4Radius*cos(datum.theta):datum.row==5?row5Radius*cos(datum.theta):datum.row==6?row6Radius*cos(datum.theta):0"
},
{
"type": "formula",
"as": "y",
"expr": "datum.row==0?row0Radius*sin(datum.theta):datum.row==1?row1Radius*sin(datum.theta):datum.row==2?row2Radius*sin(datum.theta):datum.row==3?row3Radius*sin(datum.theta):datum.row==4?row4Radius*sin(datum.theta):datum.row==5?row5Radius*sin(datum.theta):datum.row==6?row6Radius*sin(datum.theta):0"
},
{
"type": "window",
"sort": {
"field": "theta",
"order": "ascending"
},
"ops": ["row_number"],
"fields": ["row_number"],
"as": ["lookup"]
},
{
"type": "lookup",
"from": "dataset",
"key": "index",
"fields": ["lookup"],
"values": ["Party"],
"as": ["finalParty"]
}
]
}
],
"scales": [
{
"name": "x",
"type": "linear",
"round": true,
"nice": true,
"zero": true,
"domain": {
"field": "x",
"data": "placement"
},
"range": "width"
},
{
"name": "y",
"type": "linear",
"round": true,
"nice": true,
"zero": true,
"domain": {
"field": "y",
"data": "placement"
},
"range": "height"
},
{
"name": "color",
"type": "ordinal",
"domain": {
"data": "placement",
"field": "finalParty"
},
"range": {"scheme": "pbiColorNominal"}
}
],
"marks": [
{
"name": "marks",
"type": "symbol",
"from": {"data": "placement"},
"encode": {
"update": {
"x": {
"scale": "x",
"field": "x"
},
"y": {
"scale": "y",
"field": "y"
},
"shape": {"value": "circle"},
"size": {"value": 130},
"stroke": {
"value": "#4682b4"
},
"tooltip": {
"signal": "datum"
},
"fill": {
"scale": "color",
"field": "finalParty"
}
}
}
}
]
}
This is the updated Vega specification (note you need to change the setting in the Deneb visual to use the "Vega" provider instead of the default "Vega-Lite" provider)
I got this to work in the attached file by just modifying the Vega spec you posted slightly. Note that I needed to add a "person" field in my example to effectively generate a row per seat
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"width": 550,
"height": 300,
"signals": [
{
"name": "dataLength",
"update": "length(data('dataset'))"
},
{
"name": "row0Radius",
"value": 280
},
{
"name": "row1Radius",
"value": 260
},
{
"name": "row2Radius",
"value": 240
},
{
"name": "row3Radius",
"value": 220
},
{
"name": "row4Radius",
"value": 200
},
{
"name": "row5Radius",
"value": 180
},
{
"name": "row6Radius",
"value": 160
},
{
"name": "row0Circ",
"update": "PI*row0Radius"
},
{
"name": "row1Circ",
"update": "PI*row1Radius"
},
{
"name": "row2Circ",
"update": "PI*row2Radius"
},
{
"name": "row3Circ",
"update": "PI*row3Radius"
},
{
"name": "row4Circ",
"update": "PI*row4Radius"
},
{
"name": "row5Circ",
"update": "PI*row5Radius"
},
{
"name": "row6Circ",
"update": "PI*row6Radius"
},
{
"name": "totalLength",
"update": "row0Circ+row1Circ+row2Circ+row3Circ+row4Circ+row5Circ+row6Circ "
}
],
"data": [
{
"name": "dataset",
"transform": [
{
"type": "project",
"fields": ["Person", "Party"]
},
{
"type": "window",
"ops": ["row_number"],
"fields": [null],
"as": ["index"],
"sort": {
"field": "Party",
"order": "descending"
}
}
]
},
{
"name": "placement",
"transform": [
{
"type": "sequence",
"start": 1,
"stop": {
"signal": "dataLength+1"
},
"as": "index"
},
{
"type": "formula",
"as": "wholeCirc",
"expr": "totalLength/dataLength"
},
{
"type": "window",
"ops": ["sum"],
"fields": ["wholeCirc"],
"as": ["cumWholeCirc"]
},
{
"type": "formula",
"as": "row",
"expr": "datum.cumWholeCirc <row0Circ?0:datum.cumWholeCirc <row0Circ+row1Circ?1:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ?2:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ+row3Circ?3:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ+row3Circ+row4Circ?4:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ+row3Circ+row4Circ+row5Circ?5:6 "
},
{
"type": "joinaggregate",
"fields": ["Person"],
"ops": ["count"],
"groupby": ["row"],
"as": ["rowCount"]
},
{
"type": "formula",
"as": "rowCirc",
"expr": "datum.row==0?(row0Circ/(datum.rowCount-1)):datum.row==1?(row1Circ/(datum.rowCount-1)):datum.row==2?(row2Circ/(datum.rowCount-1)):datum.row==3?(row3Circ/(datum.rowCount-1)):datum.row==4?(row4Circ/(datum.rowCount-1)):datum.row==5?(row5Circ/(datum.rowCount-1)):datum.row==6?(row6Circ/(datum.rowCount-1)):0"
},
{
"type": "window",
"ops": ["sum"],
"fields": ["rowCirc"],
"groupby": ["row"],
"sort": {
"field": "index",
"order": "descending"
},
"as": ["cumRowCirc"]
},
{
"type": "formula",
"as": "cumRowCircAct",
"expr": "datum.cumRowCirc - datum.rowCirc "
},
{
"type": "formula",
"as": "theta",
"expr": "datum.cumRowCircAct==0?0:datum.row==0?(datum.cumRowCircAct/row0Radius):datum.row==1?(datum.cumRowCircAct/row1Radius):datum.row==2?datum.cumRowCircAct/row2Radius:datum.row==3?datum.cumRowCircAct/row3Radius:datum.row==4?datum.cumRowCircAct/row4Radius:datum.row==5?datum.cumRowCircAct/row5Radius:datum.row==6?datum.cumRowCircAct/row6Radius:0"
},
{
"type": "formula",
"as": "x",
"expr": "datum.row==0?row0Radius*cos(datum.theta):datum.row==1?row1Radius*cos(datum.theta):datum.row==2?row2Radius*cos(datum.theta):datum.row==3?row3Radius*cos(datum.theta):datum.row==4?row4Radius*cos(datum.theta):datum.row==5?row5Radius*cos(datum.theta):datum.row==6?row6Radius*cos(datum.theta):0"
},
{
"type": "formula",
"as": "y",
"expr": "datum.row==0?row0Radius*sin(datum.theta):datum.row==1?row1Radius*sin(datum.theta):datum.row==2?row2Radius*sin(datum.theta):datum.row==3?row3Radius*sin(datum.theta):datum.row==4?row4Radius*sin(datum.theta):datum.row==5?row5Radius*sin(datum.theta):datum.row==6?row6Radius*sin(datum.theta):0"
},
{
"type": "window",
"sort": {
"field": "theta",
"order": "ascending"
},
"ops": ["row_number"],
"fields": ["row_number"],
"as": ["lookup"]
},
{
"type": "lookup",
"from": "dataset",
"key": "index",
"fields": ["lookup"],
"values": ["Party"],
"as": ["finalParty"]
}
]
}
],
"scales": [
{
"name": "x",
"type": "linear",
"round": true,
"nice": true,
"zero": true,
"domain": {
"field": "x",
"data": "placement"
},
"range": "width"
},
{
"name": "y",
"type": "linear",
"round": true,
"nice": true,
"zero": true,
"domain": {
"field": "y",
"data": "placement"
},
"range": "height"
},
{
"name": "color",
"type": "ordinal",
"domain": {
"data": "placement",
"field": "finalParty"
},
"range": {"scheme": "pbiColorNominal"}
}
],
"marks": [
{
"name": "marks",
"type": "symbol",
"from": {"data": "placement"},
"encode": {
"update": {
"x": {
"scale": "x",
"field": "x"
},
"y": {
"scale": "y",
"field": "y"
},
"shape": {"value": "circle"},
"size": {"value": 130},
"stroke": {
"value": "#4682b4"
},
"tooltip": {
"signal": "datum"
},
"fill": {
"scale": "color",
"field": "finalParty"
}
}
}
}
]
}
This is the updated Vega specification (note you need to change the setting in the Deneb visual to use the "Vega" provider instead of the default "Vega-Lite" provider)
Hi there, Does the visual need to be curved? There may be a waffle template that will be easier to use. If there are always the same amount of seats, there might be a lower code solution, such as using Synoptic Panel, Pureviz or Visio diagram
Proud to be a Super User!
@KerKol @v-henryk-mstf I wanted it to be curve but if there is other alternative visual please share with me. It is same number of seat every time.
Hi @Anonymous ,
There does not seem to be a similar visual object in powerbi. What are your specific needs and maybe there is some other visual object that can replace it.
Looking forward to your reply.
Best Regards,
Henry
I want researching and I found that Deneb declarative custom visual can be use to achieve this.
However, I have tried to use it but didn't work.
I found some code in JSON but I don't know anything regarding Deneb and JSON. see below
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"width": 550,
"height": 300,
"signals": [
{"name": "dataLength", "update": "length(data('penguins'))"},
{"name": "row0Radius", "value": 280},
{"name": "row1Radius", "value": 260},
{"name": "row2Radius", "value": 240},
{"name": "row3Radius", "value": 220},
{"name": "row4Radius", "value": 200},
{"name": "row5Radius", "value": 180},
{"name": "row6Radius", "value": 160},
{"name": "row0Circ", "update": "PI*row0Radius"},
{"name": "row1Circ", "update": "PI*row1Radius"},
{"name": "row2Circ", "update": "PI*row2Radius"},
{"name": "row3Circ", "update": "PI*row3Radius"},
{"name": "row4Circ", "update": "PI*row4Radius"},
{"name": "row5Circ", "update": "PI*row5Radius"},
{"name": "row6Circ", "update": "PI*row6Radius"},
{
"name": "totalLength",
"update": "row0Circ+row1Circ+row2Circ+row3Circ+row4Circ+row5Circ+row6Circ "
}
],
"data": [
{
"name": "penguins",
"url": "data/penguins.json",
"transform": [
{"type": "project", "fields": ["Species", "Island"]},
{
"type": "window",
"ops": ["row_number"],
"fields": [null],
"as": ["index"],
"sort": {"field": "Island", "order": "ascending"}
}
]
},
{
"name": "placement",
"transform": [
{
"type": "sequence",
"start": 1,
"stop": {"signal": "dataLength+1"},
"as": "index"
},
{
"type": "formula",
"as": "wholeCirc",
"expr": "totalLength/dataLength"
},
{
"type": "window",
"ops": ["sum"],
"fields": ["wholeCirc"],
"as": ["cumWholeCirc"]
},
{
"type": "formula",
"as": "row",
"expr": "datum.cumWholeCirc <row0Circ?0:datum.cumWholeCirc <row0Circ+row1Circ?1:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ?2:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ+row3Circ?3:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ+row3Circ+row4Circ?4:datum.cumWholeCirc <row0Circ+row1Circ+row2Circ+row3Circ+row4Circ+row5Circ?5:6 "
},
{
"type": "joinaggregate",
"fields": ["Species"],
"ops": ["count"],
"groupby": ["row"],
"as": ["rowCount"]
},
{
"type": "formula",
"as": "rowCirc",
"expr": "datum.row==0?(row0Circ/(datum.rowCount-1)):datum.row==1?(row1Circ/(datum.rowCount-1)):datum.row==2?(row2Circ/(datum.rowCount-1)):datum.row==3?(row3Circ/(datum.rowCount-1)):datum.row==4?(row4Circ/(datum.rowCount-1)):datum.row==5?(row5Circ/(datum.rowCount-1)):datum.row==6?(row6Circ/(datum.rowCount-1)):0"
},
{
"type": "window",
"ops": ["sum"],
"fields": ["rowCirc"],
"groupby": ["row"],
"sort": {"field": "index", "order": "descending"},
"as": ["cumRowCirc"]
},
{
"type": "formula",
"as": "cumRowCircAct",
"expr": "datum.cumRowCirc - datum.rowCirc "
},
{
"type": "formula",
"as": "theta",
"expr": "datum.cumRowCircAct==0?0:datum.row==0?(datum.cumRowCircAct/row0Radius):datum.row==1?(datum.cumRowCircAct/row1Radius):datum.row==2?datum.cumRowCircAct/row2Radius:datum.row==3?datum.cumRowCircAct/row3Radius:datum.row==4?datum.cumRowCircAct/row4Radius:datum.row==5?datum.cumRowCircAct/row5Radius:datum.row==6?datum.cumRowCircAct/row6Radius:0"
},
{
"type": "formula",
"as": "x",
"expr": "datum.row==0?row0Radius*cos(datum.theta):datum.row==1?row1Radius*cos(datum.theta):datum.row==2?row2Radius*cos(datum.theta):datum.row==3?row3Radius*cos(datum.theta):datum.row==4?row4Radius*cos(datum.theta):datum.row==5?row5Radius*cos(datum.theta):datum.row==6?row6Radius*cos(datum.theta):0"
},
{
"type": "formula",
"as": "y",
"expr": "datum.row==0?row0Radius*sin(datum.theta):datum.row==1?row1Radius*sin(datum.theta):datum.row==2?row2Radius*sin(datum.theta):datum.row==3?row3Radius*sin(datum.theta):datum.row==4?row4Radius*sin(datum.theta):datum.row==5?row5Radius*sin(datum.theta):datum.row==6?row6Radius*sin(datum.theta):0"
},
{
"type": "window",
"sort": {"field": "theta", "order": "ascending"},
"ops": ["row_number"],
"fields": ["row_number"],
"as": ["lookup"]
},
{
"type": "lookup",
"from": "penguins",
"key": "index",
"fields": ["lookup"],
"values": ["Island"],
"as": ["finalIsland"]
}
]
}
],
"scales": [
{
"name": "x",
"type": "linear",
"round": true,
"nice": true,
"zero": true,
"domain": {"field": "x", "data": "placement"},
"range": "width"
},
{
"name": "y",
"type": "linear",
"round": true,
"nice": true,
"zero": true,
"domain": {"field": "y", "data": "placement"},
"range": "height"
},
{
"name": "color",
"type": "ordinal",
"domain": {"data": "placement", "field": "finalIsland"},
"range": {"scheme": "category10"}
}
],
"marks": [
{
"name": "marks",
"type": "symbol",
"from": {"data": "placement"},
"encode": {
"update": {
"x": {"scale": "x", "field": "x"},
"y": {"scale": "y", "field": "y"},
"shape": {"value": "circle"},
"size": {"value": 130},
"stroke": {"value": "#4682b4"},
"tooltip": {"signal": "datum"},
"fill": {"scale": "color", "field": "finalIsland"}
}
}
}
]
}
This code was shared but I don't know how to reference my data and the column and measure I'm using.
My data is Poll and the field (Party ) and measure (Seat Allocated).
Please can someone help me out with the Deneb and code above to reference dataset and column and measure.
Join the Fabric FabCon Global Hackathon—running virtually through Nov 3. Open to all skill levels. $10,000 in prizes!
Check out the September 2025 Power BI update to learn about new features.