Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
I have a scenario to get discrepancy records across 2 different JSON objects. I will import the 2 objects into PowerBI Desktop and name as 1 VS 2.
Therefore, what I have is:
| Table1 | Name | Industry | City | Table 2 | Name | Industry | City | |
| record 1 | A | A | C | record 1 | A | B | C | |
| record 2 | A | B | C | record 2 | A | B | C | |
| record 3 | A | B | C | record 3 | A | B | C |
The result I am looking for is a new table showing:
| New Table | Name | Industry | City |
| record 1 | Yes | No | Yes |
| record 2 | Yes | Yes | Yes |
| record 3 | Yes | Yes | Yes |
Could anyone point me with some direction how to get the new table generated? Appreciated a million!
Solved! Go to Solution.
@Anonymous,
Try this in Power Query:
let
Source = Table.NestedJoin(Table1, {"Record ID"}, Table2, {"Record ID"}, "Table2", JoinKind.Inner),
RenameColumns = Table.RenameColumns(
Source,
{{"Name", "Table1.Name"}, {"Industry", "Table1.Industry"}, {"City", "Table1.City"}}
),
ExpandTable2 = Table.ExpandTableColumn(
RenameColumns,
"Table2",
{"Name", "Industry", "City"},
{"Table2.Name", "Table2.Industry", "Table2.City"}
),
AddName = Table.AddColumn(
ExpandTable2,
"Name",
each if [Table1.Name] = [Table2.Name] then "Yes" else "No"
),
AddIndustry = Table.AddColumn(
AddName,
"Industry",
each if [Table1.Industry] = [Table2.Industry] then "Yes" else "No"
),
AddCity = Table.AddColumn(
AddIndustry,
"City",
each if [Table1.City] = [Table2.City] then "Yes" else "No"
),
RemoveColumns = Table.RemoveColumns(
AddCity,
{
"Table1.Name",
"Table1.Industry",
"Table1.City",
"Table2.Name",
"Table2.Industry",
"Table2.City"
}
)
in
RemoveColumns
Proud to be a Super User!
@Anonymous,
Try this in Power Query:
let
Source = Table.NestedJoin(Table1, {"Record ID"}, Table2, {"Record ID"}, "Table2", JoinKind.Inner),
RenameColumns = Table.RenameColumns(
Source,
{{"Name", "Table1.Name"}, {"Industry", "Table1.Industry"}, {"City", "Table1.City"}}
),
ExpandTable2 = Table.ExpandTableColumn(
RenameColumns,
"Table2",
{"Name", "Industry", "City"},
{"Table2.Name", "Table2.Industry", "Table2.City"}
),
AddName = Table.AddColumn(
ExpandTable2,
"Name",
each if [Table1.Name] = [Table2.Name] then "Yes" else "No"
),
AddIndustry = Table.AddColumn(
AddName,
"Industry",
each if [Table1.Industry] = [Table2.Industry] then "Yes" else "No"
),
AddCity = Table.AddColumn(
AddIndustry,
"City",
each if [Table1.City] = [Table2.City] then "Yes" else "No"
),
RemoveColumns = Table.RemoveColumns(
AddCity,
{
"Table1.Name",
"Table1.Industry",
"Table1.City",
"Table2.Name",
"Table2.Industry",
"Table2.City"
}
)
in
RemoveColumns
Proud to be a Super User!
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
Check out the November 2025 Power BI update to learn about new features.
| User | Count |
|---|---|
| 66 | |
| 44 | |
| 40 | |
| 29 | |
| 19 |
| User | Count |
|---|---|
| 200 | |
| 126 | |
| 103 | |
| 70 | |
| 53 |