Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
I'm trying to create new columns that better reflect total attendance counts.
Currently, the following statuses exist:
- "RSVP"
- "Attended"
- "Non RSVP"
If a user RSVP's to an event their status will be "RSVP"
Then, if they attend the event, this will be updated to "Attended"
-if they don't attend, it will remain as "RSVP"
If they did not RSVP to the event but attended, their status will reflect as "Non RSVP"
I want to have the following categories:
- ActualAttendance: (Attended + Non RSVP)
- RSVPAttended: (Attended)
- NonRSVPAttended: (Non RSVP)
- TotalRSVP: (Attended + RSVP)
- Did not attend: (RSVP)
Solved! Go to Solution.
Hi @brizy ,
I created some data:
Here are the steps you can follow:
1. Create calculated column.
Count =
var _count=
COUNTX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses]=EARLIER('Table'[statuses])),[statuses])
var _max=CALCULATE(MIN('Table'[Date]),FILTER(ALL('Table'),YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses]=EARLIER('Table'[statuses])))
return
IF(
'Table'[Date]=_max,_count,0)
2. Create calculated table.
True =
var _summ1=
SUMMARIZE('Table',
'Table'[Date],
"statuses","ActualAttendance",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] in { "Attended","Non RSVP"}),[Count]))
var _summ11=
UNION('Table',_summ1)
var _summ2=
SUMMARIZE('Table',
'Table'[Date],
"statuses","RSVPAttended",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] ="Attended"),[Count]))
var _summ22=
UNION(_summ11,_summ2)
var _summ3=
SUMMARIZE('Table',
'Table'[Date],
"statuses","NonRSVPAttended",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] ="Non RSVP"),[Count]))
var _summ33=
UNION(_summ22,_summ3)
var _summ4=
SUMMARIZE('Table',
'Table'[Date],
"statuses","TotalRSVP",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] in { "Attended","RSVP"}),[Count]))
var _summ44=
UNION( _summ33,_summ4)
var _summ5=
SUMMARIZE('Table',
'Table'[Date],
"statuses","Did not attend",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] ="RSVP"),[Count]))
var _summ55=
UNION(_summ44,_summ5)
return
_summ55
Create computed column in True table
COUNT_ALL =
IF(
'True'[Date]=
CALCULATE(MIN('True'[Date]),FILTER(ALL('True'),YEAR('True'[Date])= YEAR(EARLIER('True'[Date]))&&MONTH('True'[Date])=MONTH(EARLIER('True'[Date]))&&'True'[statuses]=EARLIER('True'[statuses]))),
[Count],BLANK())
3. Result:
Best Regards,
Liu Yang
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly
Hi @brizy ,
I created some data:
Here are the steps you can follow:
1. Create calculated column.
Count =
var _count=
COUNTX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses]=EARLIER('Table'[statuses])),[statuses])
var _max=CALCULATE(MIN('Table'[Date]),FILTER(ALL('Table'),YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses]=EARLIER('Table'[statuses])))
return
IF(
'Table'[Date]=_max,_count,0)
2. Create calculated table.
True =
var _summ1=
SUMMARIZE('Table',
'Table'[Date],
"statuses","ActualAttendance",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] in { "Attended","Non RSVP"}),[Count]))
var _summ11=
UNION('Table',_summ1)
var _summ2=
SUMMARIZE('Table',
'Table'[Date],
"statuses","RSVPAttended",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] ="Attended"),[Count]))
var _summ22=
UNION(_summ11,_summ2)
var _summ3=
SUMMARIZE('Table',
'Table'[Date],
"statuses","NonRSVPAttended",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] ="Non RSVP"),[Count]))
var _summ33=
UNION(_summ22,_summ3)
var _summ4=
SUMMARIZE('Table',
'Table'[Date],
"statuses","TotalRSVP",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] in { "Attended","RSVP"}),[Count]))
var _summ44=
UNION( _summ33,_summ4)
var _summ5=
SUMMARIZE('Table',
'Table'[Date],
"statuses","Did not attend",
"Count",
SUMX(FILTER(ALL('Table'),YEAR('Table'[Date])=YEAR(EARLIER('Table'[Date]))&&MONTH('Table'[Date])=MONTH(EARLIER('Table'[Date]))&&'Table'[statuses] ="RSVP"),[Count]))
var _summ55=
UNION(_summ44,_summ5)
return
_summ55
Create computed column in True table
COUNT_ALL =
IF(
'True'[Date]=
CALCULATE(MIN('True'[Date]),FILTER(ALL('True'),YEAR('True'[Date])= YEAR(EARLIER('True'[Date]))&&MONTH('True'[Date])=MONTH(EARLIER('True'[Date]))&&'True'[statuses]=EARLIER('True'[statuses]))),
[Count],BLANK())
3. Result:
Best Regards,
Liu Yang
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly
Please provide sanitized sample data that fully covers your issue. If you paste the data into a table in your post or use one of the file services it will be easier to assist you. I cannot use screenshots of your source data.
Please show the expected outcome based on the sample data you provided. Screenshots of the expected outcome are ok.
https://community.powerbi.com/t5/Desktop/How-to-Get-Your-Question-Answered-Quickly/m-p/1447523
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
| User | Count |
|---|---|
| 38 | |
| 37 | |
| 34 | |
| 31 | |
| 27 |
| User | Count |
|---|---|
| 136 | |
| 99 | |
| 73 | |
| 66 | |
| 65 |