Advance your Data & AI career with 50 days of live learning, dataviz contests, hands-on challenges, study groups & certifications and more!
Get registeredGet Fabric Certified for FREE during Fabric Data Days. Don't miss your chance! Request now
I am trying to compare a previous row value with the next row and use that criteria to highlight any changes in a table. The expression below pulls the last value with the same attribute name and same line number. The dataset has approx 215000 records. The expression below was working fine with a smaller dataset, but as it has grown, it has now stopped working due to not enough memory. I'm hoping someone can suggest ways to simplify the expression of the calculated column.
1. "Allow data previews to download in the background" is unselected.
2. I have increased the Data Cache Management Options Max Allowed (MB) to 25000
I think this should be possible without TOPN. Can you maybe provide a sample dataset with relevant columns?
Best regards
Michael
I am unable to attach a csv or any exported data from the file so below is a preview of how the table looks. I believe I have every variable from 2 different timestamps.
| Date | Time | DateTime | Key | Index | Line | Machine | Attribute | Value | PreviousValue |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4860 | 211442 | 8 | S1 | S1_Bl | 1.287696 | 1.428329 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4860 | 211440 | 8 | S1 | S1_BP | 366 | 0 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4860 | 211443 | 8 | S1 | S1_Co | 1.675896 | 1.845162 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4860 | 211444 | 8 | S1 | S1_Ex | 0.2 | 0.3 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4860 | 211445 | 8 | S1 | S1_Ex | 26.3 | 24.1 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4860 | 211448 | 8 | S1 | S1_Ov | 132.9142 | 22.27851 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4861 | 211477 | 6 | S1 | S1_Bl | 1.797583 | 1.797583 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4861 | 211474 | 6 | S1 | S1_BP | 7236 | 7211 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4861 | 211478 | 6 | S1 | S1_Co | 2.018417 | 2.018417 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4861 | 211479 | 6 | S1 | S1_Ex | 0.2 | 0.2 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4861 | 211480 | 6 | S1 | S1_Ex | 25.5 | 24.4 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4861 | 211483 | 6 | S1 | S1_Ov | 139.0545 | 139.5428 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4862 | 211504 | 7 | S1 | S1_Bl | 1.190058 | 1.180065 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4862 | 211501 | 7 | S1 | S1_BP | 22038 | 22044 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4862 | 211505 | 7 | S1 | S1_Co | 1.605881 | 1.555853 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4862 | 211506 | 7 | S1 | S1_Ex | 0.25 | 0.25 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4862 | 211507 | 7 | S1 | S1_Ex | 30.8 | 28.9 |
| 12/14/2022 0:00 | 1899-12-30 14:56:58 | 12/14/2022 14:56 | 4862 | 211510 | 7 | S1 | S1_Ov | 182.2688 | 184.1243 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3860 | 211289 | 6 | A1 | A1_Pr | 0 | 0 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3860 | 211290 | 6 | A1 | A1_Pr | 350 | 350 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3860 | 211269 | 6 | S1 | S1_Bl | 1.797583 | 1.787583 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3860 | 211266 | 6 | S1 | S1_BP | 7211 | 7223 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3860 | 211270 | 6 | S1 | S1_Co | 2.018417 | 2.018417 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3860 | 211271 | 6 | S1 | S1_Ex | 0.2 | 0.2 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3860 | 211272 | 6 | S1 | S1_Ex | 24.4 | 23.1 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3860 | 211275 | 6 | S1 | S1_Ov | 139.5428 | 123.6244 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3861 | 211347 | 7 | A1 | A1_Pr | 0 | 0 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3861 | 211348 | 7 | A1 | A1_Pr | 280 | 280 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3861 | 211327 | 7 | S1 | S1_Bl | 1.180065 | 1.180065 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3861 | 211324 | 7 | S1 | S1_BP | 22044 | 22063 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3861 | 211328 | 7 | S1 | S1_Co | 1.555853 | 1.555853 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3861 | 211329 | 7 | S1 | S1_Ex | 0.25 | 0.25 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3861 | 211330 | 7 | S1 | S1_Ex | 28.9 | 26.4 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3861 | 211333 | 7 | S1 | S1_Ov | 184.1243 | 176.043 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3862 | 211399 | 8 | A1 | A1_Pr | 0 | 0 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3862 | 211400 | 8 | A1 | A1_Pr | 100 | 100 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3862 | 211383 | 8 | S1 | S1_Bl | 1.428329 | 1.428329 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3862 | 211380 | 8 | S1 | S1_BP | 0 | 18974 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3862 | 211384 | 8 | S1 | S1_Co | 1.845162 | 1.845162 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3862 | 211385 | 8 | S1 | S1_Ex | 0.3 | 0.3 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3862 | 211386 | 8 | S1 | S1_Ex | 24.1 | 24.8 |
| 12/14/2022 0:00 | 1899-12-30 10:04:03 | 12/14/2022 10:04 | 3862 | 211389 | 8 | S1 | S1_Ov | 22.27851 | 74.35529 |
Advance your Data & AI career with 50 days of live learning, contests, hands-on challenges, study groups & certifications and more!
Check out the October 2025 Power BI update to learn about new features.