Advance your Data & AI career with 50 days of live learning, dataviz contests, hands-on challenges, study groups & certifications and more!
Get registeredGet Fabric Certified for FREE during Fabric Data Days. Don't miss your chance! Request now
Hello, Wizards
I need your help can't get my head around this,I have a database of WorkFlow Approvals that shows who approved and how many days that It get to be approved. Like below
| ID | 1TH Approver | 1th Approval | 2TH Approver | 2th Approval | 3TH Approver | 3th Approval | 4TH Approver | 4th Approval | Days 1th Aprov. | Days 2th Aprov. | Days 3th Aprov. | Days 4th Aprov. |
| 1 | Y1 | YES - NAME - 08.12.2021 | Y2 | YES - WF-BATCH - 08.12.2021 | Y2 | YES - NAME - 08.12.2021 | Y3 | YES - WF-BATCH - 08.12.2021 | 0 | 0 | 0 | 0 |
| 2 | Y1 | YES - NAME - 08.12.2021 | YX | YES - WF-BATCH - 08.12.2021 | Y3 | YES - NAME - 08.12.2021 | Y3 | YES - NAME - 09.12.2021 | 1 | 1 | 1 | 1 |
| 3 | Y1 | YES - NAME - 08.12.2021 | Y2 | YES - NAME - 23.12.2021 | Y8 | NO | Y3 | 8 | 0 | 4 | 1 | |
| 4 | Y1 | YES - NAME - 08.12.2021 | Y2 | YES - WF-BATCH - 08.12.2021 | Y9 | YES - WF-BATCH - 07.12.2021 | Y3 | YES - NAME - 09.12.2021 | 8 | 0 | 0 | 0 |
| 5 | Y1 | YES - NAME - 08.12.2021 | Y2 | YES - WF-BATCH - 08.12.2021 | Y2 | YES - WF-BATCH - 07.12.2021 | Y3 | YES - NAME - 09.12.2021 | 8 | 0 | 1 | 0 |
| 6 | Y1 | YES - NAME - 08.12.2021 | Y2 | YES - WF-BATCH - 08.12.2021 | Y2 | YES - WF-BATCH - 07.12.2021 | Y3 | YES - NAME - 09.12.2021 | 8 | 4 | 1 | 0 |
| 7 | Y1 | YES - NAME - 08.12.2021 | Y2 | YES - WF-BATCH - 08.12.2021 | Y2 | YES - WF-BATCH - 07.12.2021 | Y3 | YES - NAME - 09.12.2021 | 8 | 4 | 1 | 3 |
| 8 | Y1 | YES - NAME - 08.12.2021 | YX | YES - WF-BATCH - 08.12.2021 | Y2 | YES - WF-BATCH - 07.12.2021 | Y3 | YES - NAME - 09.12.2021 | 8 | 4 | 1 | 3 |
| 9 | Y1 | YES - NAME - 07.12.2021 | YX | YES - WF-BATCH - 07.12.2021 | Y3 | YES - WF-BATCH - 07.12.2021 | Y3 | YES - WF-BATCH - 07.12.2021 | 8 | 4 | 0 | 3 |
| 10 | Y1 | YES - NAME - 07.12.2021 | YX | YES - WF-BATCH - 07.12.2021 | Y3 | YES - WF-BATCH - 07.12.2021 | Y8 | YES - WF-BATCH - 07.12.2021 | 0 | 4 | 0 | 3 |
| 11 | Y1 | NO | YX | Y3 | Y8 | YES - NAME - 09.12.2021 | 4 | 0 | 0 | 0 | ||
| 12 | Y1 | NO | YX | Y3 | Y8 | YES - WF-BATCH - 07.12.2021 | 4 | 0 | 0 | 0 | ||
| 13 | Y1 | YES - NAME - 05.12.2021 | Y2 | YES - WF-BATCH - 21.12.2021 | Y3 | YES - WF-BATCH - 21.12.2021 | Y8 | YES - WF-BATCH - 21.12.2021 | 1 | 1 | 0 | 3 |
| 14 | Y1 | YES - NAME - 05.12.2021 | Y2 | YES - WF-BATCH - 21.12.2021 | Y2 | YES - WF-BATCH - 21.12.2021 | Y8 | YES - WF-BATCH - 21.12.2021 | 0 | 1 | 0 | 1 |
| 15 | Y1 | YES - NAME - 05.12.2021 | Y2 | YES - NAME - 23.12.2021 | Y2 | YES - WF-BATCH - 21.12.2021 | Y8 | YES - NAME - 09.12.2021 | 0 | 1 | 0 | 3 |
| 16 | Y1 | YES - NAME - 05.12.2021 | YX | YES - WF-BATCH - 07.12.2021 | Y2 | YES - NAME - 08.12.2021 | Y3 | YES - WF-BATCH - 08.12.2021 | 0 | 0 | 1 | 0 |
| 17 | Y1 | YES - NAME - 08.12.2021 | YX | YES - WF-BATCH - 07.12.2021 | Y2 | YES - NAME - 08.12.2021 | Y3 | YES - WF-BATCH - 08.12.2021 | 0 | 0 | 1 | 0 |
| 18 | Y1 | YES - NAME - 08.12.2021 | YX | YES - WF-BATCH - 07.12.2021 | Y2 | YES - NAME - 07.12.2021 | Y3 | YES - NAME - 09.12.2021 | 1 | 0 | 0 | 0 |
| 19 | Y1 | YES - NAME - 08.12.2021 | YX | YES - WF-BATCH - 07.12.2021 | Y2 | YES - NAME - 07.12.2021 | Y3 | YES - WF-BATCH - 07.12.2021 | 1 | 0 | 0 | 0 |
| 20 | Y1 | YES - NAME - 08.12.2021 | YX | YES - WF-BATCH - 07.12.2021 | Y2 | YES - WF-BATCH - 07.12.2021 | Y3 | YES - WF-BATCH - 07.12.2021 | 1 | 0 | 0 | 0 |
As one can see I have multiple collumns with the same sectors(Y1, Y2, Y3..) that are required to approve and another column that shows in how many days It get approved. I need to show on average how many days a sector approve something.
| Approver | Average Day to approve |
| Y1 | 2 |
| Y2 | 3 |
| Y3 | 1 |
| Y3 | 5 |
| Y8 | 1 |
| Y9 | 1 |
Something like Above. The sequence of each flow it's different because depending of it goes to different sectors and some approvals are automatic like(WF-BATCH).
Thanks In advance Guys!
@lucas-seg for this type of analysis, a better option may be to restructure your data into something that looks like below (truncated). This could be done using Power Query and some Unpivot / Pivot operations.
| ID | Approval Order | APPROVER | APPROVAL | DAYS APROV. |
| 1 | 2 | Y2 | YES - WF-BATCH - 08.12.2021 | 0 |
| 1 | 3 | Y2 | YES - NAME - 08.12.2021 | 0 |
| 1 | 1 | Y1 | YES - NAME - 08.12.2021 | 0 |
| 1 | 4 | Y3 | YES - WF-BATCH - 08.12.2021 | 0 |
| 2 | 3 | Y3 | YES - NAME - 08.12.2021 | 1 |
| 2 | 1 | Y1 | YES - NAME - 08.12.2021 | 1 |
| 2 | 2 | YX | YES - WF-BATCH - 08.12.2021 | 1 |
| 2 | 4 | Y3 | YES - NAME - 09.12.2021 | 1 |
| 3 | 1 | Y1 | YES - NAME - 08.12.2021 | 8 |
| 3 | 2 | Y2 | YES - NAME - 23.12.2021 | 0 |
| 3 | 3 | Y8 | NO | 4 |
| 3 | 4 | Y3 | 1 |
Having the data in that structure would make it very easy then to simply calculate the average days per approver.
See linked .pbix file as example.
https://drive.google.com/file/d/1yQAXsm82wvyiYbRH8wYc3Slqh2nLLJ0G/view?usp=sharing
Check out the November 2025 Power BI update to learn about new features.
Advance your Data & AI career with 50 days of live learning, contests, hands-on challenges, study groups & certifications and more!
| User | Count |
|---|---|
| 93 | |
| 70 | |
| 50 | |
| 40 | |
| 39 |