Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Calling all Data Engineers! Fabric Data Engineer (Exam DP-700) live sessions are back! Starting October 16th. Sign up.

Reply
BiJoe
Helper II
Helper II

[VS Code notebook]: Dropping a delta table using Spark SQL fails

In a Spark notebook in Fabric lakehouse online, this works just fine

 

spark.sql("drop table SCHEMA.TABLE")

 

In my VS Code Spark notebook, in the same Lakehouse, Spark SQL commands like 

 

df_raw = spark.sql("select * from SCHEMA.TABLE")
df_raw.show(5)

 

also works just fine, even if for each Spark command I get the error message in the Problems window.

 

"spark" is not defined

 

Trying to drop the specific table, before dropping it in online notebook of course, results in:

 

Py4JJavaError                             Traceback (most recent call last)
Cell In[29], line 1----> 1spark.sql("drop table SCHEMA.TABLE")

File c:\ProgramData\anaconda3\envs\fabric-synapse-runtime-1-2\lib\site-packages\pyspark\sql\session.py:1440, in SparkSession.sql(self, sqlQuery, args, **kwargs)
   1438try:
   1439litArgs = {k: _to_java_column(lit(v)) for k, v in (args or {}).items()}
-> 1440return DataFrame(self._jsparkSession.sql(sqlQuery, litArgs), self)
   1441finally:
   1442if len(kwargs) > 0:
File c:\ProgramData\anaconda3\envs\fabric-synapse-runtime-1-2\lib\site-packages\py4j\java_gateway.py:1321, in JavaMember.__call__(self, *args)
   1315command = proto.CALL_COMMAND_NAME +\
   1316self.command_header +\
   1317args_command +\
   1318proto.END_COMMAND_PART
   1320answer = self.gateway_client.send_command(command)
-> 1321return_value = get_return_value(
   1322answer, self.gateway_client, self.target_id, self.name)
   1324for temp_arg in temp_args:
   1325temp_arg._detach()
File c:\ProgramData\anaconda3\envs\fabric-synapse-runtime-1-2\lib\site-packages\pyspark\errors\exceptions\captured.py:169, in capture_sql_exception.<locals>.deco(*a, **kw)
    167def deco(*a: Any, **kw: Any) -> Any:
    168try:
--> 169return f(*a, **kw)
    170except Py4JJavaError as e:
    171converted = convert_exception(e.java_exception)
File c:\ProgramData\anaconda3\envs\fabric-synapse-runtime-1-2\lib\site-packages\py4j\protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
    324value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
    325if answer[1] == REFERENCE_TYPE:
--> 326raise Py4JJavaError(
    327"An error occurred while calling {0}{1}{2}.\n".
    328format(target_id, ".", name), value)
    329else:
    330raise Py4JError(
    331"An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
    332format(target_id, ".", name, value))

Py4JJavaError: An error occurred while calling o32.sql.
: org.apache.spark.SparkException: [INTERNAL_ERROR] Found the unresolved operator: 'UnresolvedIdentifier [SCHEMA, TABLE], true
== SQL(line 1, position 1) ==
drop table SCHEMA.TABLE
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

	at org.apache.spark.SparkException$.internalError(SparkException.scala:77)
	at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis0$54(CheckAnalysis.scala:755)
	at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.$anonfun$checkAnalysis0$54$adapted(CheckAnalysis.scala:750)
	at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:295)
	at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$foreachUp$1(TreeNode.scala:294)
	at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$foreachUp$1$adapted(TreeNode.scala:294)
	at scala.collection.Iterator.foreach(Iterator.scala:943)
	at scala.collection.Iterator.foreach$(Iterator.scala:943)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
	at scala.collection.IterableLike.foreach(IterableLike.scala:74)
	at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
	at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
	at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:294)
	at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis0(CheckAnalysis.scala:750)
	at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis0$(CheckAnalysis.scala:160)
	at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis0(Analyzer.scala:191)
	at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis(CheckAnalysis.scala:156)
	at org.apache.spark.sql.catalyst.analysis.CheckAnalysis.checkAnalysis$(CheckAnalysis.scala:146)
	at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:191)
	at org.apache.spark.sql.catalyst.analysis.Analyzer.$anonfun$executeAndCheck$1(Analyzer.scala:214)
	at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:330)
	at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:211)
	at org.apache.spark.sql.execution.QueryExecution.$anonfun$analyzed$1(QueryExecution.scala:120)
	at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:120)
	at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:288)
	at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:642)
	at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:288)
	at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827)
	at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:287)
	at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:120)
	at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:118)
	at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:110)
	at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99)
	at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827)
	at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97)
	at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:640)
	at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827)
	at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:630)
	at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:662)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
	at py4j.Gateway.invoke(Gateway.java:282)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
	at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
	at java.lang.Thread.run(Thread.java:750)

 

Is my Spark Conda implementation somehow corrupt? I had a lot of problems installing Pyspark, and had to install Spark runtime environment 1.2 manually like this

 

pip install https://tridentvscodeextension.blob.core.windows.net/spark-lighter-lib/spark34/spark_lighter_lib-34.0.0.3-py3-none-any.whl

 

2 REPLIES 2
Anonymous
Not applicable

Hi @BiJoe 
Thanks for using Microsoft Fabric Community.

This might require a deeper investigation from our engineering team and they can guide you better.

Please go ahead and raise a support ticket to reach our support team:

https://support.fabric.microsoft.com/support
Please provide the ticket number here as we can keep an eye on it.

 

Thanks

Anonymous
Not applicable

Hi @BiJoe 
We haven’t heard from you on the last response and was just checking back to see if you got a chance to create a support ticket. If yes please provide the details here.
Otherwise, will respond back with the more details and we will try to help.
Thanks

Helpful resources

Announcements
FabCon Global Hackathon Carousel

FabCon Global Hackathon

Join the Fabric FabCon Global Hackathon—running virtually through Nov 3. Open to all skill levels. $10,000 in prizes!

September Fabric Update Carousel

Fabric Monthly Update - September 2025

Check out the September 2025 Fabric update to learn about new features.

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.