Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

To celebrate FabCon Vienna, we are offering 50% off select exams. Ends October 3rd. Request your discount now.

Reply
kmvaishakha
New Member

The Spark SQL phase analysis failed with an internal error

Environment: Runtime 1.3 (Spark 3.5 , delta 3.2)
I am getting this error when i do Select * from schema.table
[INTERNAL_ERROR] The Spark SQL phase analysis failed with an internal error. You hit a bug in Spark or the Spark plugins you use. Please, report this bug to the corresponding communities or vendors, and provide the full stack trace. org.apache.spark.SparkException$.internalError(SparkException.scala:107) org.apache.spark.sql.execution.QueryExecution$.toInternalError(QueryExecution.scala:800) org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:812) org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:440) org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:961) org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:439) org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:174) org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:163) org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:114) org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:100) org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:961) org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:98) org.apache.spark.sql.SparkSession.$anonfun$sql$4(SparkSession.scala:752) org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:961) org.apache.spark.sql.SparkSession.sql(SparkSession.scala:743) org.apache.spark.sql.SparkSession.sql(SparkSession.scala:774) org.apache.spark.sql.SparkSession.sql(SparkSession.scala:805) org.apache.livy.repl.SQLInterpreter.execute(SQLInterpreter.scala:163) org.apache.livy.repl.Session.$anonfun$executeCode$1(Session.scala:909) scala.Option.map(Option.scala:230) org.apache.livy.repl.Session.executeCode(Session.scala:906) org.apache.livy.repl.Session.$anonfun$execute$17(Session.scala:597) org.apache.livy.repl.Session.withRealtimeOutputSupport(Session.scala:1169) org.apache.livy.repl.Session.$anonfun$execute$3(Session.scala:597) scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) scala.concurrent.Future$.$anonfun$apply$1(Future.scala:659) scala.util.Success.$anonfun$map$1(Try.scala:255) scala.util.Success.map(Try.scala:213) scala.concurrent.Future.$anonfun$map$1(Future.scala:292) scala.concurrent.impl.Promise.liftedTree1$1(Promise.scala:33) scala.concurrent.impl.Promise.$anonfun$transform$1(Promise.scala:33) scala.concurrent.impl.CallbackRunnable.run(Promise.scala:64) java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128) java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628) java.base/java.lang.Thread.run(Thread.java:829)

5 REPLIES 5
v-prasare
Community Support
Community Support

We are following up once again regarding your query. Could you please confirm if the issue has been resolved through the support ticket with Microsoft?
If the issue has been resolved, we kindly request you to share the resolution or key insights here to help others in the community. If we don’t hear back, we’ll go ahead and close this thread.
Should you need further assistance in the future, we encourage you to reach out via the Microsoft Fabric Community Forum and create a new thread. We’ll be happy to help.

Thank you for your understanding and participation.

v-prasare
Community Support
Community Support

Hi @kmvaishakha ,
If your issue still persists, please consider raising a support ticket for further assistance.
To raise a support ticket for Fabric and Power BI, kindly follow the steps outlined in the following guide:

How to create a Fabric and Power BI Support ticket - Power BI | Microsoft Learn

 

 

thanks,

Prashanth Are

anilgavhane
Resolver III
Resolver III

What You Can Try

  • Run DESCRIBE TABLE schema.table
  • See if the table metadata is accessible. If this fails, the issue is likely with the table itself.
    • Use SHOW TABLES IN schema
    • Confirm the table is listed and accessible.

       

      • Try a column-specific query

         

         

         

        SELECT column1, column2 FROM schema.table

         

         

        • This can help isolate if the issue is with a specific column or schema structure.

           

          • Refresh the table metadata

             

             

             

            REFRESH TABLE schema.table

             

            1. Check Delta Table Versioning
              • If the table was created with a newer Delta version than supported in Runtime 1.3, compatibility issues may arise.
              • Review Spark Logs
                • Look for clues in the Spark driver and executor logs. Sometimes the root cause is buried deeper than the stack trace suggests.
                • Recreate the Table (if feasible)
                  • If the table is small or early-stage, consider recreating it with clean metadata.

spaceman127
Resolver I
Resolver I

Hi @kmvaishakha ,

 

Creating a ticket is one option.

But what did you do in Spark Notebook?

Give us more information about your request as an example or what a lakehouse was created?
A lakehouse based on Schema Lakehouse?

We may be able to help.

 

Best regards

tayloramy
Solution Sage
Solution Sage

Hi @kmvaishakha
This looks like a platform bug. I'd suggest opening a ticket with Microsoft so one of their engineers can investigate this. 


You can submit a ticket here: https://support.fabric.microsoft.com/support/

Did I answer your question? Mark my post as a solution and give some Kudos!

Helpful resources

Announcements
September Fabric Update Carousel

Fabric Monthly Update - September 2025

Check out the September 2025 Fabric update to learn about new features.

August 2025 community update carousel

Fabric Community Update - August 2025

Find out what's new and trending in the Fabric community.

Top Kudoed Authors