Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more

Reply
phill123
Frequent Visitor

Visualise differences with selectable reference

hello big power bi community, 

 

I am currently struggling with the following problem and hope that someone might have an idea how to solve it:

Background:
Different materials with different concentrations were tested in a laboratory. A lot of different tests were carried out, some of which provided numerical and some text-based results. Each material was tested at two concentrations 1% and 3%.
In order to define the general deviation of the process and the confidence range of the values, standards "1/2/3...." with 0% concentration was carryed out as well.

Report vision in total:
1 Page) Welcome page -> Linked buttons to the individual pages with explanations of the pages and their use cases

2 pages)
On the first report page the user should get an overview of the big data set.
Contents: Radar chart with all tests and filters by tests + Button to switch to Matrix/Table view

3 pages) On the third report page, values should be compared to a self-defined referenz. The user should use the slicer to select which experiment he would like to see the respective deviations for.
Contents:
Visualizations for each test for each experiment/material show the respective absolute and % deviation from the previously defined referenz.
The deviation between the standards (that are actuall trials in the dataset) should be given as a confidence interval (can be solved in excel if necessary)

4 pages) A material should first be selected on the 4th report page. that filters the entire page. The aim is to show how increasing the amount used influences the test result.
Contents: Visualizations for each test for just one material showing the two use concentrations 1% and 3%.
(optional)= also the deviation of the two concentrations to each other

5 Page) - (optional because it is very complicated)
The best match for a defined standard or set default values should be searched for on the 5th report page. The goal is to find a material that has the same properties, regardless of concentration.

Best Match= lowest deviation in all tests

To do this, you would have to aggregate (summarize) the results of all tests into one numerical value.
Difficulty: Test results must be weighted differently and be adjustable with a slicer.
 
My Problem ist marked in bold:

* On page 3 I can't calculate the deviation from a referenz selected dynamically with the Slicer

* On page 4 I can't figure out how to calculate the deviation between the two concentrations for each material
* I think page 5 is so complex that I see it as optional

  
Notes on the data set: [real data set includes approx. 100 materials and approx. 30 tests ]

Results are not only numerical but can also be text (here I am not yet sure how to solve this - perhaps numerical assignment?)

 

raw data:

ID123456789101112
materialStandard 1material 1material 1material 2material 2material 3material 3Standard 2material 4material 4material 5material 5
application quantity0%1%3%1%3%1%3%0%1%3%1%3%
Test 1131313131313131313131313
Test 2200200200200200200200200200200200200
Test 363-7956-7579-8870-8867-8064-7878-8565-8568-8456-7667-7667-90
Test 417,51710,415,99,314,89,517,514,99,913,79,7
Test 5585646554353435753445143
Test 686,486,68386,282,484,281,386,28582,284,681,6
X-axis25,7826,0526,2426,1726,3626,2426,4425,6625,9826,1726,6528,22
Y-axis0,03-0,22-0,45-0,33-0,55-0,42-0,630,02-0,3-0,49-0,97-2,51
Z-axis-0,55-0,54-0,57-0,6-0,57-0,59-0,58-0,43-0,45-0,45-0,35-0,29
delta X to nearest standard 0,270,460,390,580,460,66 0,320,510,992,56
delta Y to nearest standard -0,25-0,48-0,36-0,58-0,45-0,66 -0,32-0,51-0,99-2,53
delta Z to nearest standard 0,01-0,02-0,05-0,02-0,04-0,03 -0,02-0,020,080,14
Test 13 0,10,030,130,040,080,07 0-0,050,090,4
Test 1677,17,77,37,47,67,37,67,37,97,77,3
Test 17crackscrackssmall crackssmall crackscrackscrackscrackscrackscrackscrackscrackscracks
Test 18crackscrackssmall crackssmall crackscrackscrackscrackscrackscrackscrackscrackscracks
Test 19G1G0G1G2G0G0G0G0G1G0G0G1
Test 204,84,65,47,44,44,65,25,63,22,94,53,4


Template/Test data transformed: Download

Many thanks in advance to everyone how give some feedback 🙂 

BR

Phill

5 REPLIES 5
phill321
New Member

current file:
https://drive.google.com/file/d/1xV0HxMPvUKvYnsuraEUzrz84J4QPtTI2/view?usp=sharing

 

phill321_0-1707409408733.png
the question is how can I calculate the standard value minus the values for each test individually?

 

Trying to make sense of your data.  

 

- are you comparing the materials against the standards for each of the quantities?

- what happened to the non-numeric values? ("crack"  etc)

 

lbendlin_0-1707429595243.png

 

I have now tried to update the task definition and implement a template in the original request.

Regarding your questions:
- In this version I removed all non-numeric values in order to reduce complexity.
- Unfortunately, the name “Standard” is actually a bit misleading -> As you can now read above, the difference to a the name Standard 1/2/... is the name of the blank value that is needed to determine the confidence range and, if necessary, to be able to represent the influence of a 1%/3% input amount of a material.

lbendlin
Super User
Super User

Unpivot your data into a usable format

 

ID Material Test Result
       

ID_materialapplication quantity_Attribut_Value

2material 11,00 %Test 113
2material 11,00 %Test 2200
2material 11,00 %Test 356-75
2material 11,00 %Test 417
2material 11,00 %Test 556,4
2material 11,00 %Test 686,6
2material 11,00 %X-axis26,05
2material 11,00 %Y-axis-0,22
2material 11,00 %Z-axis-0,54
2material 11,00 %delta X to nearest standard0,27
2material 11,00 %delta Y to nearest standard-0,25
2material 11,00 %delta Z to nearest standard0,01
2material 11,00 %Test 130,1
2material 11,00 %Test 167,1
2material 11,00 %Test 17cracks
2material 11,00 %Test 18cracks
2material 11,00 %Test 19G0
2material 11,00 %Test 204,6
4material 21,00 %Test 113
4material 21,00 %Test 2200
4material 21,00 %Test 370-88
4material 21,00 %Test 415,9
4material 21,00 %Test 554,8
4material 21,00 %Test 686,2
4material 21,00 %X-axis26,17
4material 21,00 %Y-axis-0,33
4material 21,00 %Z-axis-0,6
4material 21,00 %delta X to nearest standard0,39
4material 21,00 %delta Y to nearest standard-0,36
4material 21,00 %delta Z to nearest standard-0,05
4material 21,00 %Test 130,13
4material 21,00 %Test 167,3
4material 21,00 %Test 17small cracks
4material 21,00 %Test 18small cracks
4material 21,00 %Test 19G2
4material 21,00 %Test 207,41
6material 31,00 %Test 113
6material 31,00 %Test 2200
6material 31,00 %Test 364-78
6material 31,00 %Test 414,8
6material 31,00 %Test 553
6material 31,00 %Test 684,2
6material 31,00 %X-axis26,24
6material 31,00 %Y-axis-0,42
6material 31,00 %Z-axis-0,59
6material 31,00 %delta X to nearest standard0,46
6material 31,00 %delta Y to nearest standard-0,45
6material 31,00 %delta Z to nearest standard-0,04
6material 31,00 %Test 130,08
6material 31,00 %Test 167,6
6material 31,00 %Test 17cracks
6material 31,00 %Test 18cracks
6material 31,00 %Test 19G0
6material 31,00 %Test 204,59
9material 41,00 %Test 113
9material 41,00 %Test 2200
9material 41,00 %Test 368-84
9material 41,00 %Test 414,9
9material 41,00 %Test 553
9material 41,00 %Test 685
9material 41,00 %X-axis25,98
9material 41,00 %Y-axis-0,3
9material 41,00 %Z-axis-0,45
9material 41,00 %delta X to nearest standard0,32
9material 41,00 %delta Y to nearest standard-0,32
9material 41,00 %delta Z to nearest standard-0,02
9material 41,00 %Test 130
9material 41,00 %Test 167,3
9material 41,00 %Test 17cracks
9material 41,00 %Test 18cracks
9material 41,00 %Test 19G1
9material 41,00 %Test 203,22
11material 51,00 %Test 113
11material 51,00 %Test 2200
11material 51,00 %Test 367-76
11material 51,00 %Test 413,7
11material 51,00 %Test 550,6
11material 51,00 %Test 684,6
11material 51,00 %X-axis26,65
11material 51,00 %Y-axis-0,97
11material 51,00 %Z-axis-0,35
11material 51,00 %delta X to nearest standard0,99
11material 51,00 %delta Y to nearest standard-0,99
11material 51,00 %delta Z to nearest standard0,08
11material 51,00 %Test 130,09
11material 51,00 %Test 167,7
11material 51,00 %Test 17cracks
11material 51,00 %Test 18cracks
11material 51,00 %Test 19G0
11material 51,00 %Test 204,47
3material 13,00 %Test 113
3material 13,00 %Test 2200
3material 13,00 %Test 379-88
3material 13,00 %Test 410,4
3material 13,00 %Test 545,7
3material 13,00 %Test 683
3material 13,00 %X-axis26,24
3material 13,00 %Y-axis-0,45
3material 13,00 %Z-axis-0,57
3material 13,00 %delta X to nearest standard0,46
3material 13,00 %delta Y to nearest standard-0,48
3material 13,00 %delta Z to nearest standard-0,02
3material 13,00 %Test 130,03
3material 13,00 %Test 167,7
3material 13,00 %Test 17small cracks
3material 13,00 %Test 18small cracks
3material 13,00 %Test 19G1
3material 13,00 %Test 205,43
5material 23,00 %Test 113
5material 23,00 %Test 2200
5material 23,00 %Test 367-80
5material 23,00 %Test 49,3
5material 23,00 %Test 542,5
5material 23,00 %Test 682,4
5material 23,00 %X-axis26,36
5material 23,00 %Y-axis-0,55
5material 23,00 %Z-axis-0,57
5material 23,00 %delta X to nearest standard0,58
5material 23,00 %delta Y to nearest standard-0,58
5material 23,00 %delta Z to nearest standard-0,02
5material 23,00 %Test 130,04
5material 23,00 %Test 167,4
5material 23,00 %Test 17cracks
5material 23,00 %Test 18cracks
5material 23,00 %Test 19G0
5material 23,00 %Test 204,44
7material 33,00 %Test 113
7material 33,00 %Test 2200
7material 33,00 %Test 378-85
7material 33,00 %Test 49,5
7material 33,00 %Test 543,2
7material 33,00 %Test 681,3
7material 33,00 %X-axis26,44
7material 33,00 %Y-axis-0,63
7material 33,00 %Z-axis-0,58
7material 33,00 %delta X to nearest standard0,66
7material 33,00 %delta Y to nearest standard-0,66
7material 33,00 %delta Z to nearest standard-0,03
7material 33,00 %Test 130,07
7material 33,00 %Test 167,3
7material 33,00 %Test 17cracks
7material 33,00 %Test 18cracks
7material 33,00 %Test 19G0
7material 33,00 %Test 205,16
10material 43,00 %Test 113
10material 43,00 %Test 2200
10material 43,00 %Test 356-76
10material 43,00 %Test 49,9
10material 43,00 %Test 543,7
10material 43,00 %Test 682,2
10material 43,00 %X-axis26,17
10material 43,00 %Y-axis-0,49
10material 43,00 %Z-axis-0,45
10material 43,00 %delta X to nearest standard0,51
10material 43,00 %delta Y to nearest standard-0,51
10material 43,00 %delta Z to nearest standard-0,02
10material 43,00 %Test 13-0,05
10material 43,00 %Test 167,9
10material 43,00 %Test 17cracks
10material 43,00 %Test 18cracks
10material 43,00 %Test 19G0
10material 43,00 %Test 202,87
12material 53,00 %Test 113
12material 53,00 %Test 2200
12material 53,00 %Test 367-90
12material 53,00 %Test 49,7
12material 53,00 %Test 543,1
12material 53,00 %Test 681,6
12material 53,00 %X-axis28,22
12material 53,00 %Y-axis-2,51
12material 53,00 %Z-axis-0,29
12material 53,00 %delta X to nearest standard2,56
12material 53,00 %delta Y to nearest standard-2,53
12material 53,00 %delta Z to nearest standard0,14
12material 53,00 %Test 130,4
12material 53,00 %Test 167,3
12material 53,00 %Test 17cracks
12material 53,00 %Test 18cracks
12material 53,00 %Test 19G1
12material 53,00 %Test 203,36
1Standard 10,00 %Test 113
1Standard 10,00 %Test 2200
1Standard 10,00 %Test 363-79
1Standard 10,00 %Test 417,5
1Standard 10,00 %Test 557,5
1Standard 10,00 %Test 686,4
1Standard 10,00 %X-axis25,78
1Standard 10,00 %Y-axis0,03
1Standard 10,00 %Z-axis-0,55
1Standard 10,00 %Test 167
1Standard 10,00 %Test 17cracks
1Standard 10,00 %Test 18cracks
1Standard 10,00 %Test 19G1
1Standard 10,00 %Test 204,84
8Standard 20,00 %Test 113
8Standard 20,00 %Test 2200
8Standard 20,00 %Test 365-85
8Standard 20,00 %Test 417,5
8Standard 20,00 %Test 556,9
8Standard 20,00 %Test 686,2
8Standard 20,00 %X-axis25,66
8Standard 20,00 %Y-axis0,02
8Standard 20,00 %Z-axis-0,43
8Standard 20,00 %delta X to nearest standardN/A
8Standard 20,00 %Test 167,6
8Standard 20,00 %Test 17cracks
8Standard 20,00 %Test 18cracks
8Standard 20,00 %Test 19G0
8Standard 20,00 %Test 205,55

Helpful resources

Announcements
Power BI DataViz World Championships

Power BI Dataviz World Championships

The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!

December 2025 Power BI Update Carousel

Power BI Monthly Update - December 2025

Check out the December 2025 Power BI Holiday Recap!

FabCon Atlanta 2026 carousel

FabCon Atlanta 2026

Join us at FabCon Atlanta, March 16-20, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.