The ultimate Fabric, Power BI, SQL, and AI community-led learning event. Save €200 with code FABCOMM.
Get registeredEnhance your career with this limited time 50% discount on Fabric and Power BI exams. Ends August 31st. Request your voucher.
I need to get hit rate, I wrote a measure but it seems like too much data to show in the BI matrix table..
all my data is about 30,000 rows, data structure is like excel picture
maybe someone can solve it with better solution...?
step 1: rolling total qty evey 3 months GROUP BY SALES AND PARTNO IN TABLE A AND B
step 2: new_ship_qty/new_forcast_qty*100% ---> get hit rate.
TABLE A
sales | partmo | Forcast_QTY | YYMMDD |
Harris | 00A | 1 | 2023/12/1 |
Harris | 00A | 2 | 2024/1/1 |
Harris | 00A | 3 | 2024/2/1 |
Harris | 00A | 4 | 2024/3/1 |
Harris | 00A | 3 | 2024/4/1 |
Harris | 00B | 5 | 2024/1/1 |
Harris | 00B | 1 | 2024/2/1 |
Harris | 00C | 6 | 2024/1/1 |
Harris | 00C | 7 | 2024/2/1 |
Harris | 00C | 4 | 2024/3/1 |
Harris | 00C | 1 | 2024/4/1 |
Harris | 00C | 5 | 2024/5/1 |
Harris | 00C | 6 | 2024/6/1 |
Albee | 00A | 9 | 2023/12/1 |
Albee | 00A | 7 | 2024/1/1 |
Albee | 00A | 8 | 2024/2/1 |
Albee | 00A | 8 | 2024/3/1 |
Albee | 00B | 8 | 2024/2/1 |
Albee | 00B | 4 | 2024/3/1 |
---->
NEW TABLE A
sales | partmo | NEW_Forcast_QTY | YYMMDD |
Harris | 00A | 1 | 2023/12/1 |
Harris | 00A | 3 | 2024/1/1 |
Harris | 00A | 6 | 2024/2/1 |
Harris | 00A | 9 | 2024/3/1 |
Harris | 00A | 10 | 2024/4/1 |
Harris | 00B | 5 | 2024/1/1 |
Harris | 00B | 6 | 2024/2/1 |
Harris | 00C | 6 | 2024/1/1 |
Harris | 00C | 13 | 2024/2/1 |
Harris | 00C | 17 | 2024/3/1 |
Harris | 00C | 12 | 2024/4/1 |
Harris | 00C | 10 | 2024/5/1 |
Harris | 00C | 12 | 2024/6/1 |
Albee | 00A | 9 | 2023/12/1 |
Albee | 00A | 16 | 2024/1/1 |
Albee | 00A | 24 | 2024/2/1 |
….... |
TABLE B
sales | partmo | Ship_QTY | YYMMDD |
Harris | 00A | 3 | 2023/12/1 |
Harris | 00A | 2 | 2024/1/1 |
Harris | 00A | 5 | 2024/2/1 |
Harris | 00A | 6 | 2024/3/1 |
Harris | 00A | 6 | 2024/4/1 |
Harris | 00B | 7 | 2024/1/1 |
Harris | 00B | 2 | 2024/2/1 |
Harris | 00C | 10 | 2024/1/1 |
Harris | 00C | 9 | 2024/2/1 |
Harris | 00C | 6 | 2024/3/1 |
Harris | 00C | 7 | 2024/4/1 |
Harris | 00C | 3 | 2024/5/1 |
Harris | 00C | 3 | 2024/6/1 |
|
---->
NEW TABLE B
sales | partmo | NEW_Ship_QTY | YYMMDD |
Harris | 00A | 3 | 2023/12/1 |
Harris | 00A | 5 | 2024/1/1 |
Harris | 00A | 10 | 2024/2/1 |
Harris | 00A | 13 | 2024/3/1 |
… |
@iamJL First, create measures to calculate the rolling 3-month total for both forecast and ship quantities.
RollingForecastQTY =
CALCULATE(
SUM('TableA'[Forcast_QTY]),
DATESINPERIOD('TableA'[YYMMDD], LASTDATE('TableA'[YYMMDD]), -3, MONTH)
)
RollingShipQTY =
CALCULATE(
SUM('TableB'[Ship_QTY]),
DATESINPERIOD('TableB'[YYMMDD], LASTDATE('TableB'[YYMMDD]), -3, MONTH)
)
Next, create a measure to calculate the hit rate based on the rolling totals.
HitRate =
DIVIDE(
[RollingShipQTY],
[RollingForecastQTY],
0
) * 100
Add the HitRate measure to your BI matrix table to visualize the hit rate over time.
Proud to be a Super User! |
|
User | Count |
---|---|
11 | |
8 | |
6 | |
6 | |
6 |
User | Count |
---|---|
24 | |
14 | |
13 | |
9 | |
7 |