The ultimate Fabric, Power BI, SQL, and AI community-led learning event. Save €200 with code FABCOMM.
Get registeredCompete to become Power BI Data Viz World Champion! First round ends August 18th. Get started.
Can anybody with Python experience test my code and let's compare answers/notes, please?
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
abalone_train = pd.read_csv(
r"C:\Users\Anthony.DESKTOP-ES5HL78\Downloads\abalone.data",
sep=“,”,
names=[
“Sex”, “Length”, “Diameter”, “Height”, “Whole weight”,
“Shucked weight”, “Viscera weight”, “Shell weight”, “Age”
]
)
# Perform one-hot encoding for the ‘Sex’ column
abalone_train = pd.get_dummies(abalone_train, columns=[‘Sex’])
abalone_features = abalone_train.copy()
abalone_labels = abalone_features.pop(‘Age’)
# Convert to numpy array and float32 data type
abalone_features = abalone_features.astype(‘float32’)
abalone_labels = abalone_labels.astype(‘float32’)
# Create a sequential model
model = tf.keras.Sequential([
layers.Dense(64, activation=‘relu’),
layers.Dense(1)
])
# Compile the model
model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.MeanSquaredError())
# Fit the model
history = model.fit(abalone_features, abalone_labels, epochs=10, verbose=0)
# Print history and model summary
print(history.history)
model.summary()
{ [74.98324584960938, 12.322690963745117, 7.765621185302734, 7.502653121948242, 7.229104518890381, 6.997042179107666, 6.799757957458496, 6.645227432250977, 6.521533489227295, 6.418800354003906]}
Model: “sequential”
---
# Layer (type) Output Shape Param #
dense (Dense) (None, 64) 704
dense_1 (Dense) (None, 1) 65
=================================================================
Total params: 769
Trainable params: 769
Non-trainable params: 0
## Data for this Question: [https://drive.google.com/file/d/1iSgWZUK…sp=sharing](https://drive.google.com/file/d/1iSgWZUK23Gw6R-2rUkKeEOl6BIwms8L8/view?usp=sharing)
User | Count |
---|---|
17 | |
8 | |
7 | |
6 | |
6 |
User | Count |
---|---|
26 | |
13 | |
12 | |
9 | |
8 |