Join us at FabCon Atlanta from March 16 - 20, 2026, for the ultimate Fabric, Power BI, AI and SQL community-led event. Save $200 with code FABCOMM.
Register now!The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now! Learn more
Hello,
TableMain has ArrvialTime columns to lookup from 2 different tables.
Table1 key is Group and Table2 key is Category
Curretly I created columns :
Table 1 ArrivalTime and Table 2 ArrivalTime with LOOKUPVALUE and Combined arrival time
question to you, is there any more efficent way to do it please?
TableMain
| Code | Group | Category | Table 1 ArrivalTime | Table 2 ArrivalTime | Combined arrival time |
| 555 | Group1 | Category 1 | 1/1/2022 | 1/1/2022 | |
| 666 | Group1 | Category 1 | 1/1/2022 | 1/1/2022 | |
| 777 | Group2 | Category 2 | 1/1/2022 | 1/1/2022 | |
| 888 | Group2 | Category 2 | 1/1/2022 | 1/1/2022 | |
| 999 | Group4 | Category 3 | 3/3/2023 | 3/3/2023 |
Table1
| Group | ArrivalTime |
| Group2 | 1/1/2022 |
| Group3 | 3/3/2023 |
Table2
| Category | ArrivalTime |
| Category 1 | 1/1/2022 |
| Category 3 | 3/3/2023 |
Solved! Go to Solution.
@MasterSonic , Create a new column
coalesce(maxx(filter(Table1, Table1[Category] = tablemain[Category]) , Table1[ArrivalTime]) , maxx(filter(Table2, Table2[Category] = tablemain[Category]) , Table2[ArrivalTime]) )
@MasterSonic , Create a new column
coalesce(maxx(filter(Table1, Table1[Category] = tablemain[Category]) , Table1[ArrivalTime]) , maxx(filter(Table2, Table2[Category] = tablemain[Category]) , Table2[ArrivalTime]) )
you are star
The Power BI Data Visualization World Championships is back! Get ahead of the game and start preparing now!
| User | Count |
|---|---|
| 14 | |
| 5 | |
| 5 | |
| 3 | |
| 3 |
| User | Count |
|---|---|
| 24 | |
| 10 | |
| 10 | |
| 6 | |
| 6 |