Fabric is Generally Available. Browse Fabric Presentations. Work towards your Fabric certification with the Cloud Skills Challenge.
Hi all,
I have pasted sample data here, this is only for reference
Consumer | Product | Overall_Liking | Taste_Liking | Liking of Product | Liking_Ratings |
1 | Cookie | 9 | 1 | 0 | 1 |
2 | Cookie | 8 | 2 | 1 | 2 |
3 | Cookie | 7 | 3 | 0 | 3 |
4 | Cookie | 6 | 4 | 1 | 4 |
5 | Cookie | 5 | 5 | 0 | 5 |
6 | Cookie | 4 | 6 | 1 | 5 |
7 | Cookie | 3 | 7 | 0 | 4 |
8 | Cookie | 2 | 8 | 1 | 3 |
9 | Cookie | 1 | 9 | 0 | 2 |
Now I have Columns with key words "Liking" in it and values in Overall_Liking, Taste_Liking are in the scale of 1 to 9, Liking of Product are in the scale of 0,1 and Liking_Ratings are in the scale of 1 to 5
What I want here is to capture the columns with Key Word "Liking" and values in the scale of 1 to 9 and remove the other columns, will it be possible to do this in Power Query!?
If so please help, Thanks in Advance!!
Solved! Go to Solution.
@Kishore_SR Here are 2 methods:
with List.Accumulate:
let
Source = Table.FromRows (
Json.Document (
Binary.Decompress (
Binary.FromText (
"Tc89DsAgCAXgqzTOHVDxb+4xjGOHpoP334r0xTC8YPzQQO/Ou9Ndc77PLYcmWRekdZzdBctVEtASlKPlIol4HZXZcpYwXh+snqwnhLQuzpYZX/jNxXLEAKSti6vlgPH9nq1Z9lie/s3GBw==",
BinaryEncoding.Base64
),
Compression.Deflate
)
),
let
_t = ( ( type nullable text ) meta [ Serialized.Text = true ] )
in
type table [
Consumer = _t,
Product = _t,
Overall_Liking = _t,
Taste_Liking = _t,
#"Liking of Product" = _t,
Liking_Ratings = _t
]
),
ChangedType = Table.TransformColumnTypes (
Source,
{
{ "Consumer", Int64.Type },
{ "Product", type text },
{ "Overall_Liking", Int64.Type },
{ "Taste_Liking", Int64.Type },
{ "Liking of Product", Int64.Type },
{ "Liking_Ratings", Int64.Type }
}
),
ColumnNames = List.Select (
Table.ColumnNames ( ChangedType ),
each Text.Contains ( Text.Lower ( _ ), "liking" )
),
Transformation = List.Accumulate (
ColumnNames,
ChangedType,
( State, Current ) =>
let
Col = Table.Column ( State, Current ),
Min = List.Min ( Col ),
Max = List.Max ( Col ),
Check =
if Min = 1 and Max = 9 then
State
else
Table.RemoveColumns ( State, Current )
in
Check
)
in
Transformation
Method 2:
let
Source = Table.FromRows (
Json.Document (
Binary.Decompress (
Binary.FromText (
"Tc89DsAgCAXgqzTOHVDxb+4xjGOHpoP334r0xTC8YPzQQO/Ou9Ndc77PLYcmWRekdZzdBctVEtASlKPlIol4HZXZcpYwXh+snqwnhLQuzpYZX/jNxXLEAKSti6vlgPH9nq1Z9lie/s3GBw==",
BinaryEncoding.Base64
),
Compression.Deflate
)
),
let
_t = ( ( type nullable text ) meta [ Serialized.Text = true ] )
in
type table [
Consumer = _t,
Product = _t,
Overall_Liking = _t,
Taste_Liking = _t,
#"Liking of Product" = _t,
Liking_Ratings = _t
]
),
ChangedType = Table.TransformColumnTypes (
Source,
{
{ "Consumer", Int64.Type },
{ "Product", type text },
{ "Overall_Liking", Int64.Type },
{ "Taste_Liking", Int64.Type },
{ "Liking of Product", Int64.Type },
{ "Liking_Ratings", Int64.Type }
}
),
LikingsColumns = List.Select (
Table.ColumnNames ( ChangedType ),
each Text.Contains ( Text.Lower ( _ ), "liking" )
),
NonLikingsColumns = List.Select (
Table.ColumnNames ( ChangedType ),
each not Text.Contains ( Text.Lower ( _ ), "liking" )
),
ColumnsToKeep = List.Select (
LikingsColumns,
( ColName ) =>
let
ColList = Table.Column ( ChangedType, ColName ),
Min = List.Min ( ColList ),
Max = List.Max ( ColList ),
Check = if Min = 1 and Max = 9 then true else false
in
Check
),
Result = Table.SelectColumns ( ChangedType, NonLikingsColumns & ColumnsToKeep )
in
Result
= Table.SelectColumns(Source,List.Select(Table.ColumnNames(PreviousStepName),each not Text.Contains(_,"Liking") or List.RemoveItems(Table.Column(PreviousStepName,_),{1..9})={}))
Your Method 2 works great for me, Thank you for your help.
One concern for me is, instead of Max = 9 can we set it as greater than 5..!! because sometimes there might not be no 9 ratings given
Is there a work around for this!?
@Kishore_SR Then you can do
Check = if Min = 1 and Max > 5 then true else false
@Kishore_SR Here are 2 methods:
with List.Accumulate:
let
Source = Table.FromRows (
Json.Document (
Binary.Decompress (
Binary.FromText (
"Tc89DsAgCAXgqzTOHVDxb+4xjGOHpoP334r0xTC8YPzQQO/Ou9Ndc77PLYcmWRekdZzdBctVEtASlKPlIol4HZXZcpYwXh+snqwnhLQuzpYZX/jNxXLEAKSti6vlgPH9nq1Z9lie/s3GBw==",
BinaryEncoding.Base64
),
Compression.Deflate
)
),
let
_t = ( ( type nullable text ) meta [ Serialized.Text = true ] )
in
type table [
Consumer = _t,
Product = _t,
Overall_Liking = _t,
Taste_Liking = _t,
#"Liking of Product" = _t,
Liking_Ratings = _t
]
),
ChangedType = Table.TransformColumnTypes (
Source,
{
{ "Consumer", Int64.Type },
{ "Product", type text },
{ "Overall_Liking", Int64.Type },
{ "Taste_Liking", Int64.Type },
{ "Liking of Product", Int64.Type },
{ "Liking_Ratings", Int64.Type }
}
),
ColumnNames = List.Select (
Table.ColumnNames ( ChangedType ),
each Text.Contains ( Text.Lower ( _ ), "liking" )
),
Transformation = List.Accumulate (
ColumnNames,
ChangedType,
( State, Current ) =>
let
Col = Table.Column ( State, Current ),
Min = List.Min ( Col ),
Max = List.Max ( Col ),
Check =
if Min = 1 and Max = 9 then
State
else
Table.RemoveColumns ( State, Current )
in
Check
)
in
Transformation
Method 2:
let
Source = Table.FromRows (
Json.Document (
Binary.Decompress (
Binary.FromText (
"Tc89DsAgCAXgqzTOHVDxb+4xjGOHpoP334r0xTC8YPzQQO/Ou9Ndc77PLYcmWRekdZzdBctVEtASlKPlIol4HZXZcpYwXh+snqwnhLQuzpYZX/jNxXLEAKSti6vlgPH9nq1Z9lie/s3GBw==",
BinaryEncoding.Base64
),
Compression.Deflate
)
),
let
_t = ( ( type nullable text ) meta [ Serialized.Text = true ] )
in
type table [
Consumer = _t,
Product = _t,
Overall_Liking = _t,
Taste_Liking = _t,
#"Liking of Product" = _t,
Liking_Ratings = _t
]
),
ChangedType = Table.TransformColumnTypes (
Source,
{
{ "Consumer", Int64.Type },
{ "Product", type text },
{ "Overall_Liking", Int64.Type },
{ "Taste_Liking", Int64.Type },
{ "Liking of Product", Int64.Type },
{ "Liking_Ratings", Int64.Type }
}
),
LikingsColumns = List.Select (
Table.ColumnNames ( ChangedType ),
each Text.Contains ( Text.Lower ( _ ), "liking" )
),
NonLikingsColumns = List.Select (
Table.ColumnNames ( ChangedType ),
each not Text.Contains ( Text.Lower ( _ ), "liking" )
),
ColumnsToKeep = List.Select (
LikingsColumns,
( ColName ) =>
let
ColList = Table.Column ( ChangedType, ColName ),
Min = List.Min ( ColList ),
Max = List.Max ( ColList ),
Check = if Min = 1 and Max = 9 then true else false
in
Check
),
Result = Table.SelectColumns ( ChangedType, NonLikingsColumns & ColumnsToKeep )
in
Result
Check out the November 2023 Power BI update to learn about new features.
Read the latest Fabric Community announcements, including updates on Power BI, Synapse, Data Factory and Data Activator.