Microsoft Fabric Community Conference 2025, March 31 - April 2, Las Vegas, Nevada. Use code FABINSIDER for a $400 discount.
Register nowGet inspired! Check out the entries from the Power BI DataViz World Championships preliminary rounds and give kudos to your favorites. View the vizzies.
Hi All,
can you all help me to calculate last 4 completed weeks. I am struglling to get this result.
Solved! Go to Solution.
Hi @Anonymous
Can you show some sample data and be a bit more specific describing what you need? Show an example with the expected result based on that data. Please have a look at these tips for getting your question answered quickly.
Hi
I want to show differece quantity between last 4 completed weeks to Previous 4 weeks cpmpleted. see the attached excel.
we have only two column date and quantity.
Date | Qty | Last 4 Weeks | Previous 4 Weeks |
01-01-2019 | 2 | ||
02-01-2019 | 3 | ||
03-01-2019 | 4 | ||
04-01-2019 | 2 | ||
05-01-2019 | 3 | ||
06-01-2019 | 4 | ||
07-01-2019 | 3.8 | ||
08-01-2019 | 4.028571 | ||
09-01-2019 | 4.257143 | ||
10-01-2019 | 4.485714 | ||
11-01-2019 | 4.714286 | ||
12-01-2019 | 4.942857 | ||
13-01-2019 | 5.171429 | ||
14-01-2019 | 5.4 | ||
15-01-2019 | 5.628571 | ||
16-01-2019 | 5.857143 | ||
17-01-2019 | 6.085714 | ||
18-01-2019 | 6.314286 | ||
19-01-2019 | 6.542857 | ||
20-01-2019 | 6.771429 | ||
21-01-2019 | 7 | ||
22-01-2019 | 7.228571 | ||
23-01-2019 | 7.457143 | ||
24-01-2019 | 7.685714 | ||
25-01-2019 | 7.914286 | ||
26-01-2019 | 8.142857 | ||
27-01-2019 | 8.371429 | ||
28-01-2019 | 8.6 | ||
29-01-2019 | 8.828571 | ||
30-01-2019 | 9.057143 | ||
31-01-2019 | 9.285714 | ||
01-02-2019 | 9.514286 | ||
02-02-2019 | 9.742857 | ||
03-02-2019 | 9.971429 | ||
04-02-2019 | 10.2 | ||
05-02-2019 | 10.42857 | ||
06-02-2019 | 10.65714 | ||
07-02-2019 | 10.88571 | ||
08-02-2019 | 11.11429 | ||
09-02-2019 | 11.34286 | ||
10-02-2019 | 11.57143 | ||
11-02-2019 | 11.8 | ||
12-02-2019 | 12.02857 | ||
13-02-2019 | 12.25714 | ||
14-02-2019 | 12.48571 | ||
15-02-2019 | 12.71429 | ||
16-02-2019 | 12.94286 | ||
17-02-2019 | 13.17143 | ||
18-02-2019 | 13.4 | ||
19-02-2019 | 13.62857 | ||
20-02-2019 | 13.85714 | ||
21-02-2019 | 14.08571 | ||
22-02-2019 | 14.31429 | ||
23-02-2019 | 14.54286 | ||
24-02-2019 | 14.77143 | ||
25-02-2019 | 15 | ||
26-02-2019 | 15.22857 | ||
27-02-2019 | 15.45714 | ||
28-02-2019 | 15.68571 | ||
01-03-2019 | 15.91429 | ||
02-03-2019 | 16.14286 | ||
03-03-2019 | 16.37143 | ||
04-03-2019 | 16.6 | ||
05-03-2019 | 16.82857 | ||
06-03-2019 | 17.05714 | ||
07-03-2019 | 17.28571 | ||
08-03-2019 | 17.51429 | ||
09-03-2019 | 17.74286 | ||
10-03-2019 | 17.97143 | ||
11-03-2019 | 18.2 | ||
12-03-2019 | 18.42857 | ||
13-03-2019 | 18.65714 | ||
14-03-2019 | 18.88571 | ||
15-03-2019 | 19.11429 | ||
16-03-2019 | 19.34286 | ||
17-03-2019 | 19.57143 | ||
18-03-2019 | 19.8 | ||
19-03-2019 | 20.02857 | ||
20-03-2019 | 20.25714 | ||
21-03-2019 | 20.48571 | ||
22-03-2019 | 20.71429 | ||
23-03-2019 | 20.94286 | ||
24-03-2019 | 21.17143 | ||
25-03-2019 | 21.4 | ||
26-03-2019 | 21.62857 | ||
27-03-2019 | 21.85714 | ||
28-03-2019 | 22.08571 | ||
29-03-2019 | 22.31429 | ||
30-03-2019 | 22.54286 | ||
31-03-2019 | 22.77143 | ||
01-04-2019 | 23 | ||
02-04-2019 | 23.22857 | ||
03-04-2019 | 23.45714 | ||
04-04-2019 | 23.68571 | ||
05-04-2019 | 23.91429 | ||
06-04-2019 | 24.14286 | ||
07-04-2019 | 24.37143 | ||
08-04-2019 | 24.6 | ||
09-04-2019 | 24.82857 | ||
10-04-2019 | 25.05714 | ||
11-04-2019 | 25.28571 | ||
12-04-2019 | 25.51429 | ||
13-04-2019 | 25.74286 | ||
14-04-2019 | 25.97143 | ||
15-04-2019 | 26.2 | ||
16-04-2019 | 26.42857 | ||
17-04-2019 | 26.65714 | ||
18-04-2019 | 26.88571 | ||
19-04-2019 | 27.11429 | ||
20-04-2019 | 27.34286 | ||
21-04-2019 | 27.57143 | ||
22-04-2019 | 27.8 | ||
23-04-2019 | 28.02857 | ||
24-04-2019 | 28.25714 | ||
25-04-2019 | 28.48571 | ||
26-04-2019 | 28.71429 | ||
27-04-2019 | 28.94286 | ||
28-04-2019 | 29.17143 | ||
29-04-2019 | 29.4 | ||
30-04-2019 | 29.62857 | ||
01-05-2019 | 29.85714 | ||
02-05-2019 | 30.08571 | ||
03-05-2019 | 30.31429 | ||
04-05-2019 | 30.54286 | ||
05-05-2019 | 30.77143 | ||
06-05-2019 | 31 | ||
07-05-2019 | 31.22857 | ||
08-05-2019 | 31.45714 | ||
09-05-2019 | 31.68571 | ||
10-05-2019 | 31.91429 | ||
11-05-2019 | 32.14286 | ||
12-05-2019 | 32.37143 | ||
13-05-2019 | 32.6 | ||
14-05-2019 | 32.82857 | ||
15-05-2019 | 33.05714 | ||
16-05-2019 | 33.28571 | ||
17-05-2019 | 33.51429 | ||
18-05-2019 | 33.74286 | ||
19-05-2019 | 33.97143 | ||
20-05-2019 | 34.2 | ||
21-05-2019 | 34.42857 | ||
22-05-2019 | 34.65714 | ||
23-05-2019 | 34.88571 | ||
24-05-2019 | 35.11429 | ||
25-05-2019 | 35.34286 | ||
26-05-2019 | 35.57143 | ||
27-05-2019 | 35.8 | ||
28-05-2019 | 36.02857 | ||
29-05-2019 | 36.25714 | ||
30-05-2019 | 36.48571 | ||
31-05-2019 | 36.71429 | ||
01-06-2019 | 36.94286 | ||
02-06-2019 | 37.17143 | ||
03-06-2019 | 37.4 | ||
04-06-2019 | 37.62857 | ||
05-06-2019 | 37.85714 | ||
06-06-2019 | 38.08571 | ||
07-06-2019 | 38.31429 | ||
08-06-2019 | 38.54286 | ||
09-06-2019 | 38.77143 | ||
10-06-2019 | 39 | ||
11-06-2019 | 39.22857 | ||
12-06-2019 | 39.45714 | ||
13-06-2019 | 39.68571 | ||
14-06-2019 | 39.91429 | ||
15-06-2019 | 40.14286 | ||
16-06-2019 | 40.37143 | ||
17-06-2019 | 40.6 | ||
18-06-2019 | 40.82857 | ||
19-06-2019 | 41.05714 | ||
20-06-2019 | 41.28571 | ||
21-06-2019 | 41.51429 | ||
22-06-2019 | 41.74286 | ||
23-06-2019 | 41.97143 | ||
24-06-2019 | 42.2 | ||
25-06-2019 | 42.42857 | ||
26-06-2019 | 42.65714 | ||
27-06-2019 | 42.88571 | ||
28-06-2019 | 43.11429 | ||
29-06-2019 | 43.34286 | ||
30-06-2019 | 43.57143 | ||
01-07-2019 | 43.8 | ||
02-07-2019 | 44.02857 | ||
03-07-2019 | 44.25714 | ||
04-07-2019 | 44.48571 | ||
05-07-2019 | 44.71429 | ||
06-07-2019 | 44.94286 | ||
07-07-2019 | 45.17143 | TRUE | |
08-07-2019 | 45.4 | TRUE | |
09-07-2019 | 45.62857 | TRUE | |
10-07-2019 | 45.85714 | TRUE | |
11-07-2019 | 46.08571 | TRUE | |
12-07-2019 | 46.31429 | TRUE | |
13-07-2019 | 46.54286 | TRUE | |
14-07-2019 | 46.77143 | TRUE | |
15-07-2019 | 47 | TRUE | |
16-07-2019 | 47.22857 | TRUE | |
17-07-2019 | 47.45714 | TRUE | |
18-07-2019 | 47.68571 | TRUE | |
19-07-2019 | 47.91429 | TRUE | |
20-07-2019 | 48.14286 | TRUE | |
21-07-2019 | 48.37143 | TRUE | |
22-07-2019 | 48.6 | TRUE | |
23-07-2019 | 48.82857 | TRUE | |
24-07-2019 | 49.05714 | TRUE | |
25-07-2019 | 49.28571 | TRUE | |
26-07-2019 | 49.51429 | TRUE | |
27-07-2019 | 49.74286 | TRUE | |
28-07-2019 | 49.97143 | TRUE | |
29-07-2019 | 50.2 | TRUE | |
30-07-2019 | 50.42857 | TRUE | |
31-07-2019 | 50.65714 | TRUE | |
01-08-2019 | 50.88571 | TRUE | |
02-08-2019 | 51.11429 | TRUE | |
03-08-2019 | 51.34286 | TRUE | |
04-08-2019 | 51.57143 | TRUE | |
05-08-2019 | 51.8 | TRUE | |
06-08-2019 | 52.02857 | TRUE | |
07-08-2019 | 52.25714 | TRUE | |
08-08-2019 | 52.48571 | TRUE | |
09-08-2019 | 52.71429 | TRUE | |
10-08-2019 | 52.94286 | TRUE | |
11-08-2019 | 53.17143 | TRUE | |
12-08-2019 | 53.4 | TRUE | |
13-08-2019 | 53.62857 | TRUE | |
14-08-2019 | 53.85714 | TRUE | |
15-08-2019 | 54.08571 | TRUE | |
16-08-2019 | 54.31429 | TRUE | |
17-08-2019 | 54.54286 | TRUE | |
18-08-2019 | 54.77143 | TRUE | |
19-08-2019 | 55 | TRUE | |
20-08-2019 | 55.22857 | TRUE | |
21-08-2019 | 55.45714 | TRUE | |
22-08-2019 | 55.68571 | TRUE | |
23-08-2019 | 55.91429 | TRUE | |
24-08-2019 | 56.14286 | TRUE | |
25-08-2019 | 56.37143 | TRUE | |
26-08-2019 | 56.6 | TRUE | |
27-08-2019 | 56.82857 | TRUE | |
28-08-2019 | 57.05714 | TRUE | |
29-08-2019 | 57.28571 | TRUE | |
30-08-2019 | 57.51429 | TRUE | |
31-08-2019 | 57.74286 | TRUE | |
01-09-2019 | 57.97143 | ||
02-09-2019 | 58.2 | ||
03-09-2019 | 58.42857 | ||
04-09-2019 | 58.65714 |
Hi @Anonymous
The below blog post should help you to achieve your requirement.
https://community.powerbi.com/t5/Community-Blog/Relative-Date-Dimension/ba-p/779039,
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code FABINSIDER for a $400 discount!
Check out the February 2025 Power BI update to learn about new features.
User | Count |
---|---|
86 | |
69 | |
66 | |
51 | |
32 |
User | Count |
---|---|
114 | |
99 | |
75 | |
65 | |
40 |