Starting December 3, join live sessions with database experts and the Microsoft product team to learn just how easy it is to get started
Learn moreGet certified in Microsoft Fabric—for free! For a limited time, get a free DP-600 exam voucher to use by the end of 2024. Register now
Hello,
I am having issues listing all dates a particular item sold.
The following table represents the data loaded to Power BI via SQL.
I want to represent quickly all the dates a particular Item was sold. I am missing something because I can only pull the first date. I need something like the following.
Is there a way to accomplish this in Power BI?
Thanks!
Solved! Go to Solution.
Hi @anonymous123141 ,
I cannot access your datasource so unfortunately I cannot load any data. However, there couple of mistakes at the end of the script that I can see right away which I have highlighted in red below :
let
Source = Sql.Database("ricetec-prod.database.windows.net", "agX-dev"), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"FieldID" = _t, Grower = _t, EventDate = _t, #"ChemUsed" = _t, AppliedRate = _t, Applied Rate Units = _t, #"Acres" = _t, #"App/Rec" = _t, LayerName = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"FieldID", Int64.Type}, {"Grower", type text}, {"EventDate", type text}, {"ChemUsed", type text}, {"Applied Rate", type number}, {"Applied Rate Units", type text}, {"Acres", Int64.Type}, {"App/Rec", type text}, {"LayerName", type text}}),
#"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"FieldID", "EventDate", "Grower"}),
#"Grouped Rows" = Table.Group(#"Removed Other Columns", {"FieldID #", "Grower"}, {{"Count", each _, type table [#"FieldID #"=nullable number, EventDate=nullable text, ChemUed=nullable text]}}),
in#"ReplaceValue" #"Grouped Rows"
Lose the comma at the end of the grouped rows step and the end should be #"Grouped Rows" and not
#"ReplaceValue"
Kind regards,
Rohit
Please mark this answer as the solution if it resolves your issue.
Appreciate your kudos! 😊
Hi @anonymous123141 ,
Thanks for sending across the data. I have a potential solution for you using Power Query.
Here is the M-code :
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("xdXBbhoxEAbgd+GcKR57xh4fba+tqu0pV5TDqkENUkgqglqpT18vqCo0u+m2sHBBFiB9+nd2/C8WM2O9n93M4qa9f3lov9cjz1HNtdK6nj+131pjta1HVPXjcbVdbl66P1H38+3y8/N6vXy6b7er56f6hZUQilEIzuUGyIqAD2gAlc2JHUfhPLu7WcwsezpmaS49KquO/bJp152qndOqzw0xoG1yguwDAwVbwIvyQFojKW5MiXbnMov8GXiMbLxTvXKMMUVdGBovoSZGBV6TAiYnisiRNmUnk7D7d5cM9ydOnDGx9cDoDVBSDnzOGVwWG71WuXi3c98ecHlcfTXUjQL5cL6Cp81Xk3Rpbz/uPffL+9Cuf+wOdSyHHorn/pyVbApbQI4WyCgGMTl0k5VsCEPCtJ+sELsuyPuUBlH1Th+pmqUPxWhi5GChsYhAuWnA1/lBIyoaCcK6jEeNPkpqPKle1FHwtikESVTNl0OAaFIBFxvKkoWNlrOjntE45wOkIrkOtG5PzRghaPRJUaoW/n1hh1h0jibd1yFY80De86zrIOuE6aRtffMxx3b7sF9WOlJ1766e6xkPqAYnfMBD5sAdcZ678Dd6fElgLzr6KuxF7RUatrLmShU7ip6iY0fBE5WsvXDJ+muU7GuUjla2vsa95AkV+5q8QMX+P3pCxR6+vZft2DHyFCU7yp2gZQ/dC9bsCPb8PTsGnaJo7ZRFe/cT", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Customer #" = _t, Warehouse = _t, EventDate = _t, #"Item Name" = _t, Size = _t, UoM = _t, #"Total Amount" = _t, #"App/Rec" = _t, LayerName = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Customer #", Int64.Type}, {"Warehouse", type text}, {"EventDate", type text}, {"Item Name", type text}, {"Size", type number}, {"UoM", type text}, {"Total Amount", Int64.Type}, {"App/Rec", type text}, {"LayerName", type text}}),
#"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"Customer #", "EventDate", "Item Name"}),
#"Grouped Rows" = Table.Group(#"Removed Other Columns", {"Customer #", "Item Name"}, {{"Count", each _, type table [#"Customer #"=nullable number, EventDate=nullable text, Item Name=nullable text]}}),
#"Added Custom" = Table.AddColumn(#"Grouped Rows", "Custom", each [Count][EventDate]),
#"Removed Columns" = Table.RemoveColumns(#"Added Custom",{"Count"}),
#"Added Custom1" = Table.AddColumn(#"Removed Columns", "Custom.1", each List.Distinct([Custom])),
#"Removed Columns1" = Table.RemoveColumns(#"Added Custom1",{"Custom"}),
#"Extracted Values" = Table.TransformColumns(#"Removed Columns1", {"Custom.1", each Text.Combine(List.Transform(_, Text.From), " , "), type text}),
#"Pivoted Column" = Table.Pivot(#"Extracted Values", List.Distinct(#"Extracted Values"[#"Item Name"]), "Item Name", "Custom.1"),
#"Replaced Value" = Table.ReplaceValue(#"Pivoted Column",null,"",Replacer.ReplaceValue,{"Lava3626", "Flip344", "Jamz22", "Bath344"})
in
#"Replaced Value"
and here is the result
Kind regards,
Rohit
Please mark this answer as the solution if it resolves your issue.
Appreciate your kudos! 😊
Thank you so very much! I am coming from a SQL database, it is not working for me. I have adjusted the code as such. do you see where I made a mistake?
let
Source = Sql.Database("ricetec-prod.database.windows.net", "agX-dev"), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"FieldID" = _t, Grower = _t, EventDate = _t, #"ChemUsed" = _t, AppliedRate = _t, Applied Rate Units = _t, #"Acres" = _t, #"App/Rec" = _t, LayerName = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"FieldID", Int64.Type}, {"Grower", type text}, {"EventDate", type text}, {"ChemUsed", type text}, {"Applied Rate", type number}, {"Applied Rate Units", type text}, {"Acres", Int64.Type}, {"App/Rec", type text}, {"LayerName", type text}}),
#"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"FieldID", "EventDate", "Grower"}),
#"Grouped Rows" = Table.Group(#"Removed Other Columns", {"FieldID #", "Grower"}, {{"Count", each _, type table [#"FieldID #"=nullable number, EventDate=nullable text, ChemUed=nullable text]}}),
in
#"ReplaceValue"
Hi @anonymous123141 ,
I cannot access your datasource so unfortunately I cannot load any data. However, there couple of mistakes at the end of the script that I can see right away which I have highlighted in red below :
let
Source = Sql.Database("ricetec-prod.database.windows.net", "agX-dev"), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"FieldID" = _t, Grower = _t, EventDate = _t, #"ChemUsed" = _t, AppliedRate = _t, Applied Rate Units = _t, #"Acres" = _t, #"App/Rec" = _t, LayerName = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"FieldID", Int64.Type}, {"Grower", type text}, {"EventDate", type text}, {"ChemUsed", type text}, {"Applied Rate", type number}, {"Applied Rate Units", type text}, {"Acres", Int64.Type}, {"App/Rec", type text}, {"LayerName", type text}}),
#"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"FieldID", "EventDate", "Grower"}),
#"Grouped Rows" = Table.Group(#"Removed Other Columns", {"FieldID #", "Grower"}, {{"Count", each _, type table [#"FieldID #"=nullable number, EventDate=nullable text, ChemUed=nullable text]}}),
in#"ReplaceValue" #"Grouped Rows"
Lose the comma at the end of the grouped rows step and the end should be #"Grouped Rows" and not
#"ReplaceValue"
Kind regards,
Rohit
Please mark this answer as the solution if it resolves your issue.
Appreciate your kudos! 😊
Hi @anonymous123141 ,
Could you please provide sample data in text format (and not screenshot) so that I might be able to help you with a solution?
Kind regards,
Rohit
Thank you. Here is the data
Customer # | Warehouse | EventDate | Item Name | Size | UoM | Total Amount | App/Rec | LayerName |
3699 | Bradshaw | 5/10/2022 | Lava3626 | 10 | liters | 542 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
6594 | Bradshaw | 4/8/2022 | Lava3626 | 500 | grams | 27720 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 4/8/2022 | Lava3626 | 500 | grams | 39700 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 4/8/2022 | Lava3626 | 500 | grams | 43520 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
3699 | Bradshaw | 5/10/2022 | Flip344 | 15 | liters | 812 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
2487 | RK | 5/17/2022 | Jamz22 | 140 | liters | 18950 | Recommendation | C68ADF56-15B6-4305-83EA-4228E341AC1C |
584574 | HCC | 5/17/2022 | Jamz22 | 10.2 | liters | 1258 | Recommendation | 1B3BB5A6-D611-4EDD-9485-D80B38A852FC |
584574 | HCC | 5/17/2022 | Jamz22 | 320 | liters | 39408 | Recommendation | 74A96DF4-C80A-4EAA-B3CF-7BD4E8E85328 |
584574 | HCC | 5/17/2022 | Jamz22 | 320 | liters | 39408 | Recommendation | 9513779A-CF8E-46A5-80BB-A219C04C5841 |
6594 | Bradshaw | 4/8/2022 | Jamz22 | 320 | liters | 17740 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 4/8/2022 | Jamz22 | 320 | liters | 25408 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 4/8/2022 | Jamz22 | 320 | liters | 27854 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
6594 | Bradshaw | 4/8/2022 | Bath344 | 4 | liters | 222 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 4/8/2022 | Bath344 | 4 | liters | 318 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 4/8/2022 | Bath344 | 4 | liters | 350 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
3699 | Bradshaw | 5/10/2022 | Bath344 | 2 | liters | 110 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
3699 | Bradshaw | 5/16/2022 | Lava3626 | 10 | liters | 542 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
6594 | Bradshaw | 5/13/2022 | Lava3626 | 500 | grams | 27720 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 5/13/2022 | Lava3626 | 500 | grams | 39700 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 5/13/2022 | Lava3626 | 500 | grams | 43520 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
3699 | Bradshaw | 5/16/2022 | Flip344 | 15 | liters | 812 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
2487 | RK | 5/19/2022 | Jamz22 | 140 | liters | 18950 | Recommendation | C68ADF56-15B6-4305-83EA-4228E341AC1C |
584574 | HCC | 5/19/2022 | Jamz22 | 44 | liters | 5420 | Recommendation | 1B3BB5A6-D611-4EDD-9485-D80B38A852FC |
584574 | HCC | 5/19/2022 | Jamz22 | 320 | liters | 39408 | Recommendation | 74A96DF4-C80A-4EAA-B3CF-7BD4E8E85328 |
584574 | HCC | 5/19/2022 | Jamz22 | 320 | liters | 39408 | Recommendation | 9513779A-CF8E-46A5-80BB-A219C04C5841 |
6594 | Bradshaw | 5/13/2022 | Jamz22 | 320 | liters | 17740 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 5/13/2022 | Jamz22 | 320 | liters | 25408 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 5/13/2022 | Jamz22 | 320 | liters | 27854 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
6594 | Bradshaw | 5/13/2022 | Bath344 | 4 | liters | 222 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 5/13/2022 | Bath344 | 4 | liters | 318 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 5/13/2022 | Bath344 | 4 | liters | 350 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
3699 | Bradshaw | 5/16/2022 | Bath344 | 2 | liters | 110 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
Starting December 3, join live sessions with database experts and the Fabric product team to learn just how easy it is to get started.
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code MSCUST for a $150 discount! Early Bird pricing ends December 9th.
User | Count |
---|---|
89 | |
87 | |
81 | |
64 | |
49 |
User | Count |
---|---|
123 | |
109 | |
88 | |
68 | |
67 |