Find everything you need to get certified on Fabric—skills challenges, live sessions, exam prep, role guidance, and more. Get started
Hello,
I am having issues listing all dates a particular item sold.
The following table represents the data loaded to Power BI via SQL.
I want to represent quickly all the dates a particular Item was sold. I am missing something because I can only pull the first date. I need something like the following.
Is there a way to accomplish this in Power BI?
Thanks!
Solved! Go to Solution.
Hi @anonymous123141 ,
I cannot access your datasource so unfortunately I cannot load any data. However, there couple of mistakes at the end of the script that I can see right away which I have highlighted in red below :
let
Source = Sql.Database("ricetec-prod.database.windows.net", "agX-dev"), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"FieldID" = _t, Grower = _t, EventDate = _t, #"ChemUsed" = _t, AppliedRate = _t, Applied Rate Units = _t, #"Acres" = _t, #"App/Rec" = _t, LayerName = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"FieldID", Int64.Type}, {"Grower", type text}, {"EventDate", type text}, {"ChemUsed", type text}, {"Applied Rate", type number}, {"Applied Rate Units", type text}, {"Acres", Int64.Type}, {"App/Rec", type text}, {"LayerName", type text}}),
#"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"FieldID", "EventDate", "Grower"}),
#"Grouped Rows" = Table.Group(#"Removed Other Columns", {"FieldID #", "Grower"}, {{"Count", each _, type table [#"FieldID #"=nullable number, EventDate=nullable text, ChemUed=nullable text]}}),
in#"ReplaceValue" #"Grouped Rows"
Lose the comma at the end of the grouped rows step and the end should be #"Grouped Rows" and not
#"ReplaceValue"
Kind regards,
Rohit
Please mark this answer as the solution if it resolves your issue.
Appreciate your kudos! 😊
Hi @anonymous123141 ,
Thanks for sending across the data. I have a potential solution for you using Power Query.
Here is the M-code :
let
Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("xdXBbhoxEAbgd+GcKR57xh4fba+tqu0pV5TDqkENUkgqglqpT18vqCo0u+m2sHBBFiB9+nd2/C8WM2O9n93M4qa9f3lov9cjz1HNtdK6nj+131pjta1HVPXjcbVdbl66P1H38+3y8/N6vXy6b7er56f6hZUQilEIzuUGyIqAD2gAlc2JHUfhPLu7WcwsezpmaS49KquO/bJp152qndOqzw0xoG1yguwDAwVbwIvyQFojKW5MiXbnMov8GXiMbLxTvXKMMUVdGBovoSZGBV6TAiYnisiRNmUnk7D7d5cM9ydOnDGx9cDoDVBSDnzOGVwWG71WuXi3c98ecHlcfTXUjQL5cL6Cp81Xk3Rpbz/uPffL+9Cuf+wOdSyHHorn/pyVbApbQI4WyCgGMTl0k5VsCEPCtJ+sELsuyPuUBlH1Th+pmqUPxWhi5GChsYhAuWnA1/lBIyoaCcK6jEeNPkpqPKle1FHwtikESVTNl0OAaFIBFxvKkoWNlrOjntE45wOkIrkOtG5PzRghaPRJUaoW/n1hh1h0jibd1yFY80De86zrIOuE6aRtffMxx3b7sF9WOlJ1766e6xkPqAYnfMBD5sAdcZ678Dd6fElgLzr6KuxF7RUatrLmShU7ip6iY0fBE5WsvXDJ+muU7GuUjla2vsa95AkV+5q8QMX+P3pCxR6+vZft2DHyFCU7yp2gZQ/dC9bsCPb8PTsGnaJo7ZRFe/cT", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Customer #" = _t, Warehouse = _t, EventDate = _t, #"Item Name" = _t, Size = _t, UoM = _t, #"Total Amount" = _t, #"App/Rec" = _t, LayerName = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"Customer #", Int64.Type}, {"Warehouse", type text}, {"EventDate", type text}, {"Item Name", type text}, {"Size", type number}, {"UoM", type text}, {"Total Amount", Int64.Type}, {"App/Rec", type text}, {"LayerName", type text}}),
#"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"Customer #", "EventDate", "Item Name"}),
#"Grouped Rows" = Table.Group(#"Removed Other Columns", {"Customer #", "Item Name"}, {{"Count", each _, type table [#"Customer #"=nullable number, EventDate=nullable text, Item Name=nullable text]}}),
#"Added Custom" = Table.AddColumn(#"Grouped Rows", "Custom", each [Count][EventDate]),
#"Removed Columns" = Table.RemoveColumns(#"Added Custom",{"Count"}),
#"Added Custom1" = Table.AddColumn(#"Removed Columns", "Custom.1", each List.Distinct([Custom])),
#"Removed Columns1" = Table.RemoveColumns(#"Added Custom1",{"Custom"}),
#"Extracted Values" = Table.TransformColumns(#"Removed Columns1", {"Custom.1", each Text.Combine(List.Transform(_, Text.From), " , "), type text}),
#"Pivoted Column" = Table.Pivot(#"Extracted Values", List.Distinct(#"Extracted Values"[#"Item Name"]), "Item Name", "Custom.1"),
#"Replaced Value" = Table.ReplaceValue(#"Pivoted Column",null,"",Replacer.ReplaceValue,{"Lava3626", "Flip344", "Jamz22", "Bath344"})
in
#"Replaced Value"
and here is the result
Kind regards,
Rohit
Please mark this answer as the solution if it resolves your issue.
Appreciate your kudos! 😊
Thank you so very much! I am coming from a SQL database, it is not working for me. I have adjusted the code as such. do you see where I made a mistake?
let
Source = Sql.Database("ricetec-prod.database.windows.net", "agX-dev"), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"FieldID" = _t, Grower = _t, EventDate = _t, #"ChemUsed" = _t, AppliedRate = _t, Applied Rate Units = _t, #"Acres" = _t, #"App/Rec" = _t, LayerName = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"FieldID", Int64.Type}, {"Grower", type text}, {"EventDate", type text}, {"ChemUsed", type text}, {"Applied Rate", type number}, {"Applied Rate Units", type text}, {"Acres", Int64.Type}, {"App/Rec", type text}, {"LayerName", type text}}),
#"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"FieldID", "EventDate", "Grower"}),
#"Grouped Rows" = Table.Group(#"Removed Other Columns", {"FieldID #", "Grower"}, {{"Count", each _, type table [#"FieldID #"=nullable number, EventDate=nullable text, ChemUed=nullable text]}}),
in
#"ReplaceValue"
Hi @anonymous123141 ,
I cannot access your datasource so unfortunately I cannot load any data. However, there couple of mistakes at the end of the script that I can see right away which I have highlighted in red below :
let
Source = Sql.Database("ricetec-prod.database.windows.net", "agX-dev"), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"FieldID" = _t, Grower = _t, EventDate = _t, #"ChemUsed" = _t, AppliedRate = _t, Applied Rate Units = _t, #"Acres" = _t, #"App/Rec" = _t, LayerName = _t]),
#"Changed Type" = Table.TransformColumnTypes(Source,{{"FieldID", Int64.Type}, {"Grower", type text}, {"EventDate", type text}, {"ChemUsed", type text}, {"Applied Rate", type number}, {"Applied Rate Units", type text}, {"Acres", Int64.Type}, {"App/Rec", type text}, {"LayerName", type text}}),
#"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"FieldID", "EventDate", "Grower"}),
#"Grouped Rows" = Table.Group(#"Removed Other Columns", {"FieldID #", "Grower"}, {{"Count", each _, type table [#"FieldID #"=nullable number, EventDate=nullable text, ChemUed=nullable text]}}),
in#"ReplaceValue" #"Grouped Rows"
Lose the comma at the end of the grouped rows step and the end should be #"Grouped Rows" and not
#"ReplaceValue"
Kind regards,
Rohit
Please mark this answer as the solution if it resolves your issue.
Appreciate your kudos! 😊
Hi @anonymous123141 ,
Could you please provide sample data in text format (and not screenshot) so that I might be able to help you with a solution?
Kind regards,
Rohit
Thank you. Here is the data
Customer # | Warehouse | EventDate | Item Name | Size | UoM | Total Amount | App/Rec | LayerName |
3699 | Bradshaw | 5/10/2022 | Lava3626 | 10 | liters | 542 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
6594 | Bradshaw | 4/8/2022 | Lava3626 | 500 | grams | 27720 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 4/8/2022 | Lava3626 | 500 | grams | 39700 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 4/8/2022 | Lava3626 | 500 | grams | 43520 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
3699 | Bradshaw | 5/10/2022 | Flip344 | 15 | liters | 812 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
2487 | RK | 5/17/2022 | Jamz22 | 140 | liters | 18950 | Recommendation | C68ADF56-15B6-4305-83EA-4228E341AC1C |
584574 | HCC | 5/17/2022 | Jamz22 | 10.2 | liters | 1258 | Recommendation | 1B3BB5A6-D611-4EDD-9485-D80B38A852FC |
584574 | HCC | 5/17/2022 | Jamz22 | 320 | liters | 39408 | Recommendation | 74A96DF4-C80A-4EAA-B3CF-7BD4E8E85328 |
584574 | HCC | 5/17/2022 | Jamz22 | 320 | liters | 39408 | Recommendation | 9513779A-CF8E-46A5-80BB-A219C04C5841 |
6594 | Bradshaw | 4/8/2022 | Jamz22 | 320 | liters | 17740 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 4/8/2022 | Jamz22 | 320 | liters | 25408 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 4/8/2022 | Jamz22 | 320 | liters | 27854 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
6594 | Bradshaw | 4/8/2022 | Bath344 | 4 | liters | 222 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 4/8/2022 | Bath344 | 4 | liters | 318 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 4/8/2022 | Bath344 | 4 | liters | 350 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
3699 | Bradshaw | 5/10/2022 | Bath344 | 2 | liters | 110 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
3699 | Bradshaw | 5/16/2022 | Lava3626 | 10 | liters | 542 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
6594 | Bradshaw | 5/13/2022 | Lava3626 | 500 | grams | 27720 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 5/13/2022 | Lava3626 | 500 | grams | 39700 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 5/13/2022 | Lava3626 | 500 | grams | 43520 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
3699 | Bradshaw | 5/16/2022 | Flip344 | 15 | liters | 812 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |
2487 | RK | 5/19/2022 | Jamz22 | 140 | liters | 18950 | Recommendation | C68ADF56-15B6-4305-83EA-4228E341AC1C |
584574 | HCC | 5/19/2022 | Jamz22 | 44 | liters | 5420 | Recommendation | 1B3BB5A6-D611-4EDD-9485-D80B38A852FC |
584574 | HCC | 5/19/2022 | Jamz22 | 320 | liters | 39408 | Recommendation | 74A96DF4-C80A-4EAA-B3CF-7BD4E8E85328 |
584574 | HCC | 5/19/2022 | Jamz22 | 320 | liters | 39408 | Recommendation | 9513779A-CF8E-46A5-80BB-A219C04C5841 |
6594 | Bradshaw | 5/13/2022 | Jamz22 | 320 | liters | 17740 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 5/13/2022 | Jamz22 | 320 | liters | 25408 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 5/13/2022 | Jamz22 | 320 | liters | 27854 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
6594 | Bradshaw | 5/13/2022 | Bath344 | 4 | liters | 222 | Recommendation | ABA16DEC-E9A5-4A6F-9809-4221405D3FB6 |
558899 | Bradshaw | 5/13/2022 | Bath344 | 4 | liters | 318 | Recommendation | BBBCB2F5-D98A-4610-9240-54780447423F |
4857 | Bradshaw | 5/13/2022 | Bath344 | 4 | liters | 350 | Recommendation | C5E1C569-5193-4C07-9EEE-7E86B920EF97 |
3699 | Bradshaw | 5/16/2022 | Bath344 | 2 | liters | 110 | Recommendation | 68AAF301-77ED-4688-9A13-106EC575B85E |