Explore and share Fabric Notebooks to boost Power BI insights in the new community notebooks gallery.
Check it out now!Microsoft is giving away 50,000 FREE Microsoft Certification exam vouchers. Get Fabric certified for FREE! Learn more
Note - I want to do this in a measure, rather than a calculated column.
My data set comprises stop level data for bus routes, with timings, as well as a calculated column that calculates total elapsed duration. E.g. the following, where the result should be 840:
UniqueTripID | Stop | Time | RunningTimeDuration (calc column) |
A | 1 | 7:00:00am | 0 |
A | 2 | 7:02:00am | 120 |
A | 3 | 7:04:00am | 240 |
A | 4 | 7:06:00am | 360 |
B | 1 | 8:00:00am | 0 |
B | 2 | 8:03:00am | 180 |
B | 3 | 8:05:00am | 300 |
B | 4 | 8:08:00am | 480 |
The total time for a trip is the MAX value for Calculated Duration for any given UniqueTripID (these are unique identifiers )
I've come up with a measure that works for individual level routes:
Solved! Go to Solution.
@Anonymous
Max Cumul :=
var a = SUMMARIZE('DATA_RADIOLA','DATA_RADIOLA'[UniqueTripID],"maxlen",MAX('DATA_RADIOLA'[RunningTimeDuration (calc column)]))
return sumx(a,[maxlen])
@Anonymous
Max Cumul :=
var a = SUMMARIZE('DATA_RADIOLA','DATA_RADIOLA'[UniqueTripID],"maxlen",MAX('DATA_RADIOLA'[RunningTimeDuration (calc column)]))
return sumx(a,[maxlen])
Wonderful, works perfectly. Here is your result compared to one I created using a helper column (which slows down calculation time), and the difference is infinitesimal.
Thanks so much!!!
you make a good point, especially on the impact of larger data sets on the performance. Instead of SUMMARIZE you can also use GROUPBY() or a variety of other approaches. In DAX Studio you can study the query plan and optimize your query as needed.