Microsoft Fabric Community Conference 2025, March 31 - April 2, Las Vegas, Nevada. Use code FABINSIDER for a $400 discount.
Register nowGet inspired! Check out the entries from the Power BI DataViz World Championships preliminary rounds and give kudos to your favorites. View the vizzies.
Note - I want to do this in a measure, rather than a calculated column.
My data set comprises stop level data for bus routes, with timings, as well as a calculated column that calculates total elapsed duration. E.g. the following, where the result should be 840:
UniqueTripID | Stop | Time | RunningTimeDuration (calc column) |
A | 1 | 7:00:00am | 0 |
A | 2 | 7:02:00am | 120 |
A | 3 | 7:04:00am | 240 |
A | 4 | 7:06:00am | 360 |
B | 1 | 8:00:00am | 0 |
B | 2 | 8:03:00am | 180 |
B | 3 | 8:05:00am | 300 |
B | 4 | 8:08:00am | 480 |
The total time for a trip is the MAX value for Calculated Duration for any given UniqueTripID (these are unique identifiers )
I've come up with a measure that works for individual level routes:
Solved! Go to Solution.
@Anonymous
Max Cumul :=
var a = SUMMARIZE('DATA_RADIOLA','DATA_RADIOLA'[UniqueTripID],"maxlen",MAX('DATA_RADIOLA'[RunningTimeDuration (calc column)]))
return sumx(a,[maxlen])
@Anonymous
Max Cumul :=
var a = SUMMARIZE('DATA_RADIOLA','DATA_RADIOLA'[UniqueTripID],"maxlen",MAX('DATA_RADIOLA'[RunningTimeDuration (calc column)]))
return sumx(a,[maxlen])
Wonderful, works perfectly. Here is your result compared to one I created using a helper column (which slows down calculation time), and the difference is infinitesimal.
Thanks so much!!!
you make a good point, especially on the impact of larger data sets on the performance. Instead of SUMMARIZE you can also use GROUPBY() or a variety of other approaches. In DAX Studio you can study the query plan and optimize your query as needed.
March 31 - April 2, 2025, in Las Vegas, Nevada. Use code FABINSIDER for a $400 discount!
Check out the February 2025 Power BI update to learn about new features.
User | Count |
---|---|
84 | |
69 | |
66 | |
50 | |
32 |
User | Count |
---|---|
116 | |
99 | |
75 | |
65 | |
40 |