Microsoft Fabric Community Conference 2025, March 31 - April 2, Las Vegas, Nevada. Use code MSCUST for a $150 discount.
Register nowThe Power BI DataViz World Championships are on! With four chances to enter, you could win a spot in the LIVE Grand Finale in Las Vegas. Show off your skills.
Dataset
ID | Date1_Min | Date1_max | Date2_Min | Date2_max | Date3_Min | Date3_max | Date4_Min | Date4_max |
1 | 05/04/2020 | 14/05/2023 | 04/05/2021 | 16/05/2022 | 17/11/2022 | 30/12/2024 | 13/02/2021 | 09/08/2023 |
2 | 10/04/2020 | 17/05/2023 | 12/05/2021 | 26/05/2022 | 19/11/2022 | 02/02/2025 | 16/02/2021 | 19/08/2023 |
3 | 15/04/2020 | 20/05/2023 | 22/05/2021 | 29/05/2022 | 21/11/2022 | 05/02/2025 | 19/02/2021 | 26/08/2023 |
4 | 25/04/2020 | 28/05/2023 | 30/05/2021 | 31/05/2022 | 26/11/2022 | 30/12/2025 | 26/02/2021 | 31/08/2023 |
What I'd like to achieve is to put all the date lables into 1 column e.g. Date1, Date2, Date3 etc and then have a Min and Max column.
Desired Output
ID | Dates | Min | Max |
1 | Date1 | 05/04/2020 | 14/05/2023 |
1 | Date2 | 04/05/2021 | 16/05/2022 |
1 | Date3 | 17/11/2022 | 30/12/2024 |
2 | Date1 | 10/04/2020 | 17/05/2023 |
2 | Date2 | 12/05/2021 | 26/05/2022 |
2 | Date3 | 19/11/2022 | 02/02/2025 |
3 | Date1 | 15/04/2020 | 20/05/2023 |
3 | Date2 | 22/05/2021 | 29/05/2022 |
3 | Date3 | 21/11/2022 | 05/02/2025 |
4 | Date1 | 25/04/2020 | 28/05/2023 |
4 | Date2 | 30/05/2021 | 31/05/2022 |
4 | Date3 | 26/11/2022 | 30/12/2025 |
Not sure if this functionality is available with Dax?
Solved! Go to Solution.
Hi @obriaincian , is possible in Power Query, follow this steps:
1.- Select column "Identification" and select Unpivot other columns:
2.- Select Column "Atributo" and split by delimiter: "_", like image:
3.- Select Group by, and select option and fields like the image:
"Valor column" is the column of the dates
4.- The result:
Best regards
Hi @obriaincian , is possible in Power Query, follow this steps:
1.- Select column "Identification" and select Unpivot other columns:
2.- Select Column "Atributo" and split by delimiter: "_", like image:
3.- Select Group by, and select option and fields like the image:
"Valor column" is the column of the dates
4.- The result:
Best regards
User | Count |
---|---|
141 | |
70 | |
69 | |
53 | |
52 |
User | Count |
---|---|
208 | |
94 | |
64 | |
60 | |
57 |