Skip to main content
cancel
Showing results for 
Search instead for 
Did you mean: 

Find everything you need to get certified on Fabric—skills challenges, live sessions, exam prep, role guidance, and more. Get started

Reply
hvora787
New Member

Drill Down to Sub-Catagories for Clustered Column Chart

Good Morning,

 

I am trying to create a report for analyzing scrap data in my manufacturing plant. I like to start at a high level and be able to drill down for specific issues. Below is an example of the data. 

 

Manufacturing is divided into different departments. Printing would be one of them. That department will define scrap in terms of categories such as Dirt, Scratches, Color, etc. That will all be added into an overall department scrap for Printing. This is done for all departments. 

 

I would like to have a visual of Clustered Column Chart that shows scrap totals for each department. So I would have a column for Printing Scrap. I would like to click on that and be able to Drill Down to the sub categories of Dirt, Scratches and Color to see the breakdown. 

 

If this is not possible, having another Clustered Column Chart on the same page that shows the respective sub categories when the department scrap column is clicked would also work. 

 

Thank you for everyone’s time and support in advance. 

 

DateWork OrderBatchPrinting Scrap (Total)DirtScratchesColor
1/1/202012318125
1/2/2020123214554
1/2/2020567118837
1/3/2020567216826

 

1 ACCEPTED SOLUTION

Hi @hvora787 

If you want to show sub-category under category when drilling down, please refer to my query below:

Capture12.JPGCapture13.JPG

Table2

 

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jZVLjhsxDETv0oB3E0AU9b1CrjDwIhfI/ZexSiyJbliYLNTd1vexRJa/vy+RFvX6uqSLlhBeX6XF1zP++v3n7+vdX62OhqExUfjQORE/x0jG8loeo1fHM79asjfmJutIWGUj2DDsj+fXZyx1WMloUuLiASrYO3Q7rvVF1eLgkfawY9SfXawjZuslb7XvfmTKN6kwu3K/sKTKQqlS3VIFSNW9VMmgEFhspKJeo0OifegRq9+kGk23zt1ok1Cq6qRKEAnXqHZsdA2RFaeUUKqKGZ+ZqlTHpFzBsDvl0toYLn6/JRXIKEWyfRBXxPVnh6yWITNiy6ooJU+sJHlslFNwWI23SCyENrftyrND3ly4uygPpzMTXhabOizgRDunHKnSTSwA+fRE0iagDOq2s6qBRqrXarFXOxkXTxX5nrV+QCr+/hAFclGUm3QTXLXwtBIXVQGPRuY6G5bPi6ZUy1VY1hFHHLiql6pYXskKdEICayVW2YlV2saKFkkk3szH8QjXu5HRMdqJ6s0YuKKs/GQpp8Dq6u4CYQvS6VXeJ6elZDL52qT96JGpOCbWq7IUsXOU/4HilS9jUmaVuN7VIWaDB6wutwucVUtTEe6lmZcjKA+rQNkeynFepGIZoq4OrDn8Y1r1T2mlZS1jBUYeWPdfoDloZq6zAulYsHUOsFOuHwqw5xsRxkPwfGBkyUjcpl6ndRbm1ArC5iLXE5WhzS/Bj0wfTaEu703Wo7UuKNlQebv63RNmemNVcczi/4Xy9Xz+Aw==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Job Number" = _t, #"Work Order" = _t, Batch = _t, Date = _t, #"R Rejects" = _t, #"N Rejects" = _t, #"I Rejects" = _t, #"C Rejects" = _t, #"M Rejects" = _t, #"P Rejects" = _t, Good = _t, #"QC Samples" = _t, #"Total Bad" = _t, #"Batch Size" = _t, Yield = _t, #"Scrap %" = _t, #"R R1" = _t, #"R R2" = _t, #"N R1" = _t, #"N R2" = _t, #"I R1" = _t, #"I R2" = _t, #"I R3" = _t, #"C R1" = _t, #"C R2" = _t, #"M R1" = _t, #"M R2" = _t, #"P R1" = _t, #"P R2" = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"Job Number", Int64.Type}, {"Work Order", Int64.Type}, {"Batch", Int64.Type}, {"Date", type date}, {"R Rejects", Int64.Type}, {"N Rejects", Int64.Type}, {"I Rejects", Int64.Type}, {"C Rejects", Int64.Type}, {"M Rejects", Int64.Type}, {"P Rejects", Int64.Type}, {"Good", Int64.Type}, {"QC Samples", Int64.Type}, {"Total Bad", Int64.Type}, {"Batch Size", Int64.Type}, {"Yield", Percentage.Type}, {"Scrap %", Percentage.Type}, {"R R1", Int64.Type}, {"R R2", Int64.Type}, {"N R1", Int64.Type}, {"N R2", Int64.Type}, {"I R1", Int64.Type}, {"I R2", Int64.Type}, {"I R3", Int64.Type}, {"C R1", Int64.Type}, {"C R2", Int64.Type}, {"M R1", Int64.Type}, {"M R2", Int64.Type}, {"P R1", Int64.Type}, {"P R2", Int64.Type}}),
    #"Removed Columns" = Table.RemoveColumns(#"Changed Type",{"R Rejects", "N Rejects", "I Rejects", "C Rejects", "M Rejects", "P Rejects"}),
    #"Unpivoted Columns" = Table.UnpivotOtherColumns(#"Removed Columns", {"Job Number", "Work Order", "Batch", "Date", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %"}, "Attribute", "Value"),
    #"Split Column by Delimiter" = Table.SplitColumn(#"Unpivoted Columns", "Attribute", Splitter.SplitTextByEachDelimiter({" "}, QuoteStyle.Csv, false), {"Attribute.1", "Attribute.2"}),
    #"Changed Type1" = Table.TransformColumnTypes(#"Split Column by Delimiter",{{"Attribute.1", type text}, {"Attribute.2", type text}}),
    #"Renamed Columns" = Table.RenameColumns(#"Changed Type1",{{"Attribute.1", "Rejects"}, {"Attribute.2", "sub_Rejects"}, {"Value", "sub_Rejects value"}}),
    #"Merged Queries" = Table.NestedJoin(#"Renamed Columns", {"Job Number", "Work Order", "Batch", "Date", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %", "Rejects"}, #"Table 2 (2)", {"Job Number", "Work Order", "Batch", "Date", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %", "Rejects"}, "Table 2 (2)", JoinKind.FullOuter),
    #"Expanded Table 2 (2)" = Table.ExpandTableColumn(#"Merged Queries", "Table 2 (2)", {"Rejects value"}, {"Table 2 (2).Rejects value"})
in
    #"Expanded Table 2 (2)"

 

Table2(2)

 

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jZVLjhsxDETv0oB3E0AU9b1CrjDwIhfI/ZexSiyJbliYLNTd1vexRJa/vy+RFvX6uqSLlhBeX6XF1zP++v3n7+vdX62OhqExUfjQORE/x0jG8loeo1fHM79asjfmJutIWGUj2DDsj+fXZyx1WMloUuLiASrYO3Q7rvVF1eLgkfawY9SfXawjZuslb7XvfmTKN6kwu3K/sKTKQqlS3VIFSNW9VMmgEFhspKJeo0OifegRq9+kGk23zt1ok1Cq6qRKEAnXqHZsdA2RFaeUUKqKGZ+ZqlTHpFzBsDvl0toYLn6/JRXIKEWyfRBXxPVnh6yWITNiy6ooJU+sJHlslFNwWI23SCyENrftyrND3ly4uygPpzMTXhabOizgRDunHKnSTSwA+fRE0iagDOq2s6qBRqrXarFXOxkXTxX5nrV+QCr+/hAFclGUm3QTXLXwtBIXVQGPRuY6G5bPi6ZUy1VY1hFHHLiql6pYXskKdEICayVW2YlV2saKFkkk3szH8QjXu5HRMdqJ6s0YuKKs/GQpp8Dq6u4CYQvS6VXeJ6elZDL52qT96JGpOCbWq7IUsXOU/4HilS9jUmaVuN7VIWaDB6wutwucVUtTEe6lmZcjKA+rQNkeynFepGIZoq4OrDn8Y1r1T2mlZS1jBUYeWPdfoDloZq6zAulYsHUOsFOuHwqw5xsRxkPwfGBkyUjcpl6ndRbm1ArC5iLXE5WhzS/Bj0wfTaEu703Wo7UuKNlQebv63RNmemNVcczi/4Xy9Xz+Aw==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Job Number" = _t, #"Work Order" = _t, Batch = _t, Date = _t, #"R Rejects" = _t, #"N Rejects" = _t, #"I Rejects" = _t, #"C Rejects" = _t, #"M Rejects" = _t, #"P Rejects" = _t, Good = _t, #"QC Samples" = _t, #"Total Bad" = _t, #"Batch Size" = _t, Yield = _t, #"Scrap %" = _t, #"R R1" = _t, #"R R2" = _t, #"N R1" = _t, #"N R2" = _t, #"I R1" = _t, #"I R2" = _t, #"I R3" = _t, #"C R1" = _t, #"C R2" = _t, #"M R1" = _t, #"M R2" = _t, #"P R1" = _t, #"P R2" = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"Job Number", Int64.Type}, {"Work Order", Int64.Type}, {"Batch", Int64.Type}, {"Date", type date}, {"R Rejects", Int64.Type}, {"N Rejects", Int64.Type}, {"I Rejects", Int64.Type}, {"C Rejects", Int64.Type}, {"M Rejects", Int64.Type}, {"P Rejects", Int64.Type}, {"Good", Int64.Type}, {"QC Samples", Int64.Type}, {"Total Bad", Int64.Type}, {"Batch Size", Int64.Type}, {"Yield", Percentage.Type}, {"Scrap %", Percentage.Type}, {"R R1", Int64.Type}, {"R R2", Int64.Type}, {"N R1", Int64.Type}, {"N R2", Int64.Type}, {"I R1", Int64.Type}, {"I R2", Int64.Type}, {"I R3", Int64.Type}, {"C R1", Int64.Type}, {"C R2", Int64.Type}, {"M R1", Int64.Type}, {"M R2", Int64.Type}, {"P R1", Int64.Type}, {"P R2", Int64.Type}}),
    #"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"Job Number", "Work Order", "Batch", "Date", "R Rejects", "N Rejects", "I Rejects", "C Rejects", "M Rejects", "P Rejects", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %"}),
    #"Unpivoted Columns" = Table.UnpivotOtherColumns(#"Removed Other Columns", {"Job Number", "Work Order", "Batch", "Date", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %"}, "Attribute", "Value"),
    #"Extracted Text Before Delimiter" = Table.TransformColumns(#"Unpivoted Columns", {{"Attribute", each Text.BeforeDelimiter(_, " "), type text}}),
    #"Renamed Columns" = Table.RenameColumns(#"Extracted Text Before Delimiter",{{"Attribute", "Rejects"}, {"Value", "Rejects value"}}),
    #"Sorted Rows" = Table.Sort(#"Renamed Columns",{{"Rejects", Order.Ascending}})
in
    #"Sorted Rows"

 

Best Regards
Maggie
Community Support Team _ Maggie Li
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly.

View solution in original post

5 REPLIES 5
v-juanli-msft
Community Support
Community Support

Hi @hvora787 

Is this problem sloved? 

If it is sloved, could you kindly accept it as a solution to close this case and help the other members find it more quickly?

If not, please feel free to let me know.

 

Best Regards

Maggie

v-juanli-msft
Community Support
Community Support

Hi @hvora787 

Is the table show the structure of your real data?

If not, could you show more information?

 

Best Regards

Maggie

Hi Maggie,

 

I have pasted some of the data below. I am not not familiar with the interfase for this board and could not find a way to attach the actual Excel file. Please let me know if this works for you. 

 

R, N, I, C, M and P Rejects are scrap from different departments. R R1, R R2 and so on on the right side fo the table are sub-catagories of rejects from each departments. Please ignore the top row. When the HTML formatting is removed the top cells unmerged. 

 

Please let me know if you have any questions. Thank you for your help. 

 

Regards,

Hemal 

 

Order DetailDepartmentsYieldDEPARTMENT SUB-CATAGORIES
Job NumberWork OrderBatchDateR RejectsN RejectsI RejectsC RejectsM RejectsP RejectsGoodQC SamplesTotal BadBatch SizeYieldScrap %R R1R R2N R1N R2I R1I R2I R3C R1C R2M R1M R2P R1P R2
1182319136006821/2977061111382211650076%23%54522444215110110
1182319136006831/246441091440928950082%18%135116325552759
1182319136006851/2959732011351214750070%29%54414428252181283
1182319136006891/244311019941927950084%16%312223265512772
1182319136007171/237754920378212050076%24%214331291531361010
1216519141525401/2895541215393210550079%21%4445131233110296
1216519141525441/23545551640588750081%17%213217919141497
1216519141525671/21081134196336216250067%32%55534050232210924
1216519141525741/2671179811338216050068%32%2425503730452638
1216519141525851/22665311840129750080%19%1151201530122953
1216519141525861/277337202140129750080%19%345213911529111011
1216519141525911/2661027129354214450071%29%4224393627528454
1216519141525941/26736541642227650084%15%51343285143197
1216519141525951/265100673369212950074%26%154125048423421
1216519141525971/2108736148377212150075%24%55533017261512235

Hi @hvora787 

If you want to show sub-category under category when drilling down, please refer to my query below:

Capture12.JPGCapture13.JPG

Table2

 

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jZVLjhsxDETv0oB3E0AU9b1CrjDwIhfI/ZexSiyJbliYLNTd1vexRJa/vy+RFvX6uqSLlhBeX6XF1zP++v3n7+vdX62OhqExUfjQORE/x0jG8loeo1fHM79asjfmJutIWGUj2DDsj+fXZyx1WMloUuLiASrYO3Q7rvVF1eLgkfawY9SfXawjZuslb7XvfmTKN6kwu3K/sKTKQqlS3VIFSNW9VMmgEFhspKJeo0OifegRq9+kGk23zt1ok1Cq6qRKEAnXqHZsdA2RFaeUUKqKGZ+ZqlTHpFzBsDvl0toYLn6/JRXIKEWyfRBXxPVnh6yWITNiy6ooJU+sJHlslFNwWI23SCyENrftyrND3ly4uygPpzMTXhabOizgRDunHKnSTSwA+fRE0iagDOq2s6qBRqrXarFXOxkXTxX5nrV+QCr+/hAFclGUm3QTXLXwtBIXVQGPRuY6G5bPi6ZUy1VY1hFHHLiql6pYXskKdEICayVW2YlV2saKFkkk3szH8QjXu5HRMdqJ6s0YuKKs/GQpp8Dq6u4CYQvS6VXeJ6elZDL52qT96JGpOCbWq7IUsXOU/4HilS9jUmaVuN7VIWaDB6wutwucVUtTEe6lmZcjKA+rQNkeynFepGIZoq4OrDn8Y1r1T2mlZS1jBUYeWPdfoDloZq6zAulYsHUOsFOuHwqw5xsRxkPwfGBkyUjcpl6ndRbm1ArC5iLXE5WhzS/Bj0wfTaEu703Wo7UuKNlQebv63RNmemNVcczi/4Xy9Xz+Aw==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Job Number" = _t, #"Work Order" = _t, Batch = _t, Date = _t, #"R Rejects" = _t, #"N Rejects" = _t, #"I Rejects" = _t, #"C Rejects" = _t, #"M Rejects" = _t, #"P Rejects" = _t, Good = _t, #"QC Samples" = _t, #"Total Bad" = _t, #"Batch Size" = _t, Yield = _t, #"Scrap %" = _t, #"R R1" = _t, #"R R2" = _t, #"N R1" = _t, #"N R2" = _t, #"I R1" = _t, #"I R2" = _t, #"I R3" = _t, #"C R1" = _t, #"C R2" = _t, #"M R1" = _t, #"M R2" = _t, #"P R1" = _t, #"P R2" = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"Job Number", Int64.Type}, {"Work Order", Int64.Type}, {"Batch", Int64.Type}, {"Date", type date}, {"R Rejects", Int64.Type}, {"N Rejects", Int64.Type}, {"I Rejects", Int64.Type}, {"C Rejects", Int64.Type}, {"M Rejects", Int64.Type}, {"P Rejects", Int64.Type}, {"Good", Int64.Type}, {"QC Samples", Int64.Type}, {"Total Bad", Int64.Type}, {"Batch Size", Int64.Type}, {"Yield", Percentage.Type}, {"Scrap %", Percentage.Type}, {"R R1", Int64.Type}, {"R R2", Int64.Type}, {"N R1", Int64.Type}, {"N R2", Int64.Type}, {"I R1", Int64.Type}, {"I R2", Int64.Type}, {"I R3", Int64.Type}, {"C R1", Int64.Type}, {"C R2", Int64.Type}, {"M R1", Int64.Type}, {"M R2", Int64.Type}, {"P R1", Int64.Type}, {"P R2", Int64.Type}}),
    #"Removed Columns" = Table.RemoveColumns(#"Changed Type",{"R Rejects", "N Rejects", "I Rejects", "C Rejects", "M Rejects", "P Rejects"}),
    #"Unpivoted Columns" = Table.UnpivotOtherColumns(#"Removed Columns", {"Job Number", "Work Order", "Batch", "Date", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %"}, "Attribute", "Value"),
    #"Split Column by Delimiter" = Table.SplitColumn(#"Unpivoted Columns", "Attribute", Splitter.SplitTextByEachDelimiter({" "}, QuoteStyle.Csv, false), {"Attribute.1", "Attribute.2"}),
    #"Changed Type1" = Table.TransformColumnTypes(#"Split Column by Delimiter",{{"Attribute.1", type text}, {"Attribute.2", type text}}),
    #"Renamed Columns" = Table.RenameColumns(#"Changed Type1",{{"Attribute.1", "Rejects"}, {"Attribute.2", "sub_Rejects"}, {"Value", "sub_Rejects value"}}),
    #"Merged Queries" = Table.NestedJoin(#"Renamed Columns", {"Job Number", "Work Order", "Batch", "Date", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %", "Rejects"}, #"Table 2 (2)", {"Job Number", "Work Order", "Batch", "Date", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %", "Rejects"}, "Table 2 (2)", JoinKind.FullOuter),
    #"Expanded Table 2 (2)" = Table.ExpandTableColumn(#"Merged Queries", "Table 2 (2)", {"Rejects value"}, {"Table 2 (2).Rejects value"})
in
    #"Expanded Table 2 (2)"

 

Table2(2)

 

let
    Source = Table.FromRows(Json.Document(Binary.Decompress(Binary.FromText("jZVLjhsxDETv0oB3E0AU9b1CrjDwIhfI/ZexSiyJbliYLNTd1vexRJa/vy+RFvX6uqSLlhBeX6XF1zP++v3n7+vdX62OhqExUfjQORE/x0jG8loeo1fHM79asjfmJutIWGUj2DDsj+fXZyx1WMloUuLiASrYO3Q7rvVF1eLgkfawY9SfXawjZuslb7XvfmTKN6kwu3K/sKTKQqlS3VIFSNW9VMmgEFhspKJeo0OifegRq9+kGk23zt1ok1Cq6qRKEAnXqHZsdA2RFaeUUKqKGZ+ZqlTHpFzBsDvl0toYLn6/JRXIKEWyfRBXxPVnh6yWITNiy6ooJU+sJHlslFNwWI23SCyENrftyrND3ly4uygPpzMTXhabOizgRDunHKnSTSwA+fRE0iagDOq2s6qBRqrXarFXOxkXTxX5nrV+QCr+/hAFclGUm3QTXLXwtBIXVQGPRuY6G5bPi6ZUy1VY1hFHHLiql6pYXskKdEICayVW2YlV2saKFkkk3szH8QjXu5HRMdqJ6s0YuKKs/GQpp8Dq6u4CYQvS6VXeJ6elZDL52qT96JGpOCbWq7IUsXOU/4HilS9jUmaVuN7VIWaDB6wutwucVUtTEe6lmZcjKA+rQNkeynFepGIZoq4OrDn8Y1r1T2mlZS1jBUYeWPdfoDloZq6zAulYsHUOsFOuHwqw5xsRxkPwfGBkyUjcpl6ndRbm1ArC5iLXE5WhzS/Bj0wfTaEu703Wo7UuKNlQebv63RNmemNVcczi/4Xy9Xz+Aw==", BinaryEncoding.Base64), Compression.Deflate)), let _t = ((type nullable text) meta [Serialized.Text = true]) in type table [#"Job Number" = _t, #"Work Order" = _t, Batch = _t, Date = _t, #"R Rejects" = _t, #"N Rejects" = _t, #"I Rejects" = _t, #"C Rejects" = _t, #"M Rejects" = _t, #"P Rejects" = _t, Good = _t, #"QC Samples" = _t, #"Total Bad" = _t, #"Batch Size" = _t, Yield = _t, #"Scrap %" = _t, #"R R1" = _t, #"R R2" = _t, #"N R1" = _t, #"N R2" = _t, #"I R1" = _t, #"I R2" = _t, #"I R3" = _t, #"C R1" = _t, #"C R2" = _t, #"M R1" = _t, #"M R2" = _t, #"P R1" = _t, #"P R2" = _t]),
    #"Changed Type" = Table.TransformColumnTypes(Source,{{"Job Number", Int64.Type}, {"Work Order", Int64.Type}, {"Batch", Int64.Type}, {"Date", type date}, {"R Rejects", Int64.Type}, {"N Rejects", Int64.Type}, {"I Rejects", Int64.Type}, {"C Rejects", Int64.Type}, {"M Rejects", Int64.Type}, {"P Rejects", Int64.Type}, {"Good", Int64.Type}, {"QC Samples", Int64.Type}, {"Total Bad", Int64.Type}, {"Batch Size", Int64.Type}, {"Yield", Percentage.Type}, {"Scrap %", Percentage.Type}, {"R R1", Int64.Type}, {"R R2", Int64.Type}, {"N R1", Int64.Type}, {"N R2", Int64.Type}, {"I R1", Int64.Type}, {"I R2", Int64.Type}, {"I R3", Int64.Type}, {"C R1", Int64.Type}, {"C R2", Int64.Type}, {"M R1", Int64.Type}, {"M R2", Int64.Type}, {"P R1", Int64.Type}, {"P R2", Int64.Type}}),
    #"Removed Other Columns" = Table.SelectColumns(#"Changed Type",{"Job Number", "Work Order", "Batch", "Date", "R Rejects", "N Rejects", "I Rejects", "C Rejects", "M Rejects", "P Rejects", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %"}),
    #"Unpivoted Columns" = Table.UnpivotOtherColumns(#"Removed Other Columns", {"Job Number", "Work Order", "Batch", "Date", "Good", "QC Samples", "Total Bad", "Batch Size", "Yield", "Scrap %"}, "Attribute", "Value"),
    #"Extracted Text Before Delimiter" = Table.TransformColumns(#"Unpivoted Columns", {{"Attribute", each Text.BeforeDelimiter(_, " "), type text}}),
    #"Renamed Columns" = Table.RenameColumns(#"Extracted Text Before Delimiter",{{"Attribute", "Rejects"}, {"Value", "Rejects value"}}),
    #"Sorted Rows" = Table.Sort(#"Renamed Columns",{{"Rejects", Order.Ascending}})
in
    #"Sorted Rows"

 

Best Regards
Maggie
Community Support Team _ Maggie Li
If this post helps, then please consider Accept it as the solution to help the other members find it more quickly.

Hi Maggie,

Thank you for providing the detailed response. This is of great help.

Regards,

Hemal 

Helpful resources

Announcements
July 2024 Power BI Update

Power BI Monthly Update - July 2024

Check out the July 2024 Power BI update to learn about new features.

July Newsletter

Fabric Community Update - July 2024

Find out what's new and trending in the Fabric Community.