Microsoft is giving away 50,000 FREE Microsoft Certification exam vouchers!
Enter the sweepstakes now!See when key Fabric features will launch and what’s already live, all in one place and always up to date. Explore the new Fabric roadmap
Hi,
I'm working on developing a trend chart. however, the below functions are not providing the desired results. Shared below are the functions I have used.
Report_Week | Age_Group | Unconfirmed_Qty. | Total_Unconfirmed_ByWeek | %ageByAgeGroup | %ageRunningTotalByWeek_AgeGroup(DESC) |
01/22/2024 | [ > 120] | 140 | 21,006 | 0.67% | |
01/22/2024 | [0 - 5] | 3,324 | 21,006 | 15.82% | |
01/22/2024 | [11 - 20] | 1,219 | 21,006 | 5.80% | |
01/22/2024 | [21 - 30] | 4,175 | 21,006 | 19.88% | |
01/22/2024 | [31 - 60] | 899 | 21,006 | 4.28% | |
01/22/2024 | [6 - 10] | 7,760 | 21,006 | 36.94% | |
01/22/2024 | [61 - 90] | 3,257 | 21,006 | 15.51% | |
01/22/2024 | [91 - 120] | 232 | 21,006 | 1.10% | |
01/29/2024 | [ > 120] | 154 | 21,765 | 0.71% | |
01/29/2024 | [0 - 5] | 4,185 | 21,765 | 19.23% | |
01/29/2024 | [11 - 20] | 8,436 | 21,765 | 38.76% | |
01/29/2024 | [21 - 30] | 1,910 | 21,765 | 8.78% | |
01/29/2024 | [31 - 60] | 2,565 | 21,765 | 11.78% | |
01/29/2024 | [6 - 10] | 1,041 | 21,765 | 4.78% | |
01/29/2024 | [61 - 90] | 3,254 | 21,765 | 14.95% | |
01/29/2024 | [91 - 120] | 220 | 21,765 | 1.01% | |
02/05/2024 | [ > 120] | 131 | 20,866 | 0.63% | |
02/05/2024 | [0 - 5] | 3,394 | 20,866 | 16.27% | |
02/05/2024 | [11 - 20] | 7,771 | 20,866 | 37.24% | |
02/05/2024 | [21 - 30] | 883 | 20,866 | 4.23% | |
02/05/2024 | [31 - 60] | 3,848 | 20,866 | 18.44% | |
02/05/2024 | [6 - 10] | 2,233 | 20,866 | 10.70% | |
02/05/2024 | [61 - 90] | 2,470 | 20,866 | 11.84% | |
02/05/2024 | [91 - 120] | 136 | 20,866 | 0.65% |
Solved! Go to Solution.
@JajatiDev , Create a week or date table and join it back with your date of the table
Have these new columns in Date Table, Week Rank is Important in Date/Week Table
Week Rank = RANKX('Date','Date'[Week Start date],,ASC,Dense)
OR
Week Rank = RANKX('Date','Date'[Year Week],,ASC,Dense) //YYYYWW format
Cumm Week = CALCULATE(sum('Table'[Qty]), FILTER(ALL('Date'),'Date'[Week Rank]<=max('Date'[Week Rank])))
But I think simple cumulative should also work in case date table view by week
Cumm Sales = CALCULATE(SUM(Sales[Sales Amount]),filter(all('Date'),'Date'[date] <=max('Date'[date])))
Cumm Sales = CALCULATE(SUM(Sales[Sales Amount]),filter(allselected(date),date[date] <=max(date[Date])))
Cumm Based on Date = CALCULATE([Net], Window(1,ABS,0,REL, ALL('date'[date]),ORDERBY('Date'[date],ASC)))
Cumm Based on Date = CALCULATE([Net], Window(1,ABS,0,REL, ALLSELECTED('date'[date]),ORDERBY('Date'[date],ASC)))
@JajatiDev , Create a week or date table and join it back with your date of the table
Have these new columns in Date Table, Week Rank is Important in Date/Week Table
Week Rank = RANKX('Date','Date'[Week Start date],,ASC,Dense)
OR
Week Rank = RANKX('Date','Date'[Year Week],,ASC,Dense) //YYYYWW format
Cumm Week = CALCULATE(sum('Table'[Qty]), FILTER(ALL('Date'),'Date'[Week Rank]<=max('Date'[Week Rank])))
But I think simple cumulative should also work in case date table view by week
Cumm Sales = CALCULATE(SUM(Sales[Sales Amount]),filter(all('Date'),'Date'[date] <=max('Date'[date])))
Cumm Sales = CALCULATE(SUM(Sales[Sales Amount]),filter(allselected(date),date[date] <=max(date[Date])))
Cumm Based on Date = CALCULATE([Net], Window(1,ABS,0,REL, ALL('date'[date]),ORDERBY('Date'[date],ASC)))
Cumm Based on Date = CALCULATE([Net], Window(1,ABS,0,REL, ALLSELECTED('date'[date]),ORDERBY('Date'[date],ASC)))
User | Count |
---|---|
91 | |
74 | |
71 | |
58 | |
55 |
User | Count |
---|---|
41 | |
38 | |
34 | |
32 | |
30 |