The ultimate Microsoft Fabric, Power BI, Azure AI, and SQL learning event: Join us in Stockholm, September 24-27, 2024.
Save €200 with code MSCUST on top of early bird pricing!
Find everything you need to get certified on Fabric—skills challenges, live sessions, exam prep, role guidance, and more. Get started
Hi, I'm trying to calculate cumulative inflation, month by month for unit price forecast (DAX not Power Query).
I need two columns:
- one column with cumuative_inflation (I tried with "Productx", but it didn´t work.)
- another column with Unit_Price_Forecast (last unit_price available in the sales table)*(cumulative_inflation)
Can you help me?
FORECAST_TABLE
DATE | BU | SKU | INFLATION | Q |
1/9/2023 | PRO | 34124600 | 1 | 37665 |
1/9/2023 | RHCE | 19017003 | 1 | 17640 |
1/9/2023 | RHCE | 19017103 | 1 | 25000 |
1/9/2023 | RHCN | 19017003 | 1,06 | 291268 |
1/9/2023 | RHCN | 19017103 | 1,06 | 246497 |
1/10/2023 | PRO | 34124600 | 1 | 33480 |
1/10/2023 | RHCE | 19017003 | 1 | 17640 |
1/10/2023 | RHCE | 19017103 | 1 | 25000 |
1/10/2023 | RHCN | 19017003 | 1,06 | 300006 |
1/10/2023 | RHCN | 19017103 | 1,06 | 253891 |
1/11/2023 | PRO | 34124600 | 1 | 41850 |
1/11/2023 | RHCE | 19017003 | 1 | 17640 |
1/11/2023 | RHCE | 19017103 | 1 | 25000 |
1/11/2023 | RHCN | 19017003 | 1 | 285006 |
1/11/2023 | RHCN | 19017103 | 1 | 241197 |
1/12/2023 | PRO | 34124600 | 1 | 50219 |
1/12/2023 | RHCN | 19017003 | 1,15 | 282156 |
1/12/2023 | RHCN | 19017103 | 1,15 | 238785 |
1/1/2024 | PRO | 34124600 | 1 | 34875 |
1/1/2024 | RHCE | 19017003 | 1,08 | 21600 |
1/1/2024 | RHCE | 19017103 | 1,08 | 32400 |
1/1/2024 | RHCN | 19017003 | 1,05 | 297897 |
1/1/2024 | RHCN | 19017103 | 1,05 | 223526 |
SALES TABLE
DATE | BU | SKU | UNIT_PRICE | Q |
1/8/2023 | PRO | 34124600 | ||
1/8/2023 | RHCE | 19017003 | $ 10,0 | 15876 |
1/8/2023 | RHCE | 19017103 | $ 9,0 | 22500 |
1/8/2023 | RHCN | 19017003 | $ 1.000,0 | 262141,2 |
1/8/2023 | RHCN | 19017103 | $ 1.500,0 | 221847,3 |
1/7/2023 | PRO | 34124600 | $ 11,0 | 33480 |
1/7/2023 | RHCE | 19017003 | $ 9,5 | 17640 |
1/7/2023 | RHCE | 19017103 | $ 8,5 | 25000 |
1/7/2023 | RHCN | 19017003 | $ 950,0 | 300006 |
1/7/2023 | RHCN | 19017103 | $ 1.200,0 | 253891 |
1/6/2023 | PRO | 34124600 | $ 10,5 | 41850 |
1/6/2023 | RHCE | 19017003 | $ 9,0 | 17640 |
1/6/2023 | RHCE | 19017103 | $ 8,1 | 25000 |
1/6/2023 | RHCN | 19017003 | $ 902,5 | 285006 |
1/6/2023 | RHCN | 19017103 | $ 1.140,0 | 241197 |
I expect something like that:
DATE | BU | SKU | INFLATION | Q | INFLAT_ACUMUL | UNIT_PRICE_FORECAST |
1/9/2023 | PRO | 34124600 | 1 | 37665 | 1,00 | $ 11,0 |
1/9/2023 | RHCE | 19017003 | 1 | 17640 | 1,00 | $ 10,0 |
1/9/2023 | RHCE | 19017103 | 1 | 25000 | 1,00 | $ 9,0 |
1/9/2023 | RHCN | 19017003 | 1,06 | 291268 | 1,06 | $ 1.060,0 |
1/9/2023 | RHCN | 19017103 | 1,06 | 246497 | 1,06 | $ 1.590,0 |
1/10/2023 | PRO | 34124600 | 1 | 33480 | 1,00 | $ 11,0 |
1/10/2023 | RHCE | 19017003 | 1 | 17640 | 1,00 | $ 10,0 |
1/10/2023 | RHCE | 19017103 | 1 | 25000 | 1,00 | $ 9,0 |
1/10/2023 | RHCN | 19017003 | 1,06 | 300006 | 1,12 | $ 1.123,6 |
1/10/2023 | RHCN | 19017103 | 1,06 | 253891 | 1,12 | $ 1.685,4 |
1/11/2023 | PRO | 34124600 | 1 | 41850 | 1,00 | $ 11,0 |
1/11/2023 | RHCE | 19017003 | 1 | 17640 | 1,00 | $ 10,0 |
1/11/2023 | RHCE | 19017103 | 1 | 25000 | 1,00 | $ 9,0 |
1/11/2023 | RHCN | 19017003 | 1 | 285006 | 1,12 | $ 1.123,6 |
1/11/2023 | RHCN | 19017103 | 1 | 241197 | 1,12 | $ 1.685,4 |
1/12/2023 | PRO | 34124600 | 1 | 50219 | 1,00 | $ 11,0 |
1/12/2023 | RHCN | 19017003 | 1,15 | 282156 | 1,29 | $ 1.292,1 |
1/12/2023 | RHCN | 19017103 | 1,15 | 238785 | 1,29 | $ 1.938,2 |
1/1/2024 | PRO | 34124600 | 1 | 34875 | 1,00 | $ 11,0 |
1/1/2024 | RHCE | 19017003 | 1,08 | 21600 | 1,08 | $ 10,8 |
1/1/2024 | RHCE | 19017103 | 1,08 | 32400 | 1,08 | $ 9,7 |
1/1/2024 | RHCN | 19017003 | 1,05 | 297897 | 1,36 | $ 1.356,7 |
1/1/2024 | RHCN | 19017103 | 1,05 | 223526 | 1,36 | $ 2.035,1 |
Thanks, Ramiro
PBIX EXAMPLE
DATASOURCE EXAMPLE
thanks amitchandak, but still the same, take a look:
@Pepe1234 , Try with a common date table
Cumulative_Inflation =
CALCULATE(
PRODUCTX(FORECAST_TABLE, 1 + [INFLATION]),
FILTER(all(Date), Date[DATE] <= max(DAte[DATE]))
)
Unit_Price_Forecast =
VAR LatestPrice = calculate(Max(SALES_TABLE[UNIT_PRICE]), FILTER(all(Date), Date[DATE] = max(DAte[DATE])))
RETURN
[Cumulative_Inflation] * LatestPrice
I expected columns in yellow:
BR
Ramiro
Join the community in Stockholm for expert Microsoft Fabric learning including a very exciting keynote from Arun Ulag, Corporate Vice President, Azure Data.
Check out the August 2024 Power BI update to learn about new features.
User | Count |
---|---|
112 | |
80 | |
75 | |
52 | |
50 |
User | Count |
---|---|
133 | |
124 | |
78 | |
64 | |
61 |