The ultimate Microsoft Fabric, Power BI, Azure AI, and SQL learning event: Join us in Stockholm, September 24-27, 2024.
Save €200 with code MSCUST on top of early bird pricing!
Find everything you need to get certified on Fabric—skills challenges, live sessions, exam prep, role guidance, and more. Get started
Basic scenario:
When we want to calculate the distance between two locations, we need to know the coordinates of these two locations.
Here’s the sample data:
We now have the coordinates of current locations and destinations, using below formula we could get the distance between these locations.
Distince (KM) =
12742 -- The diameter of the Earth (KM).
* ASIN (
-- Returns the arcsine, or inverse sine, of a number.
SQRT (
-- Returns the square root of a number.
POWER (
-- Returns the result of a number raised to a power.
SIN ( -- Returns the sine of the given angle.
'Table'[Current Lat] - 'Table'[Destination Lat] )
* PI () / 360,
2
) -- PI () Returns the value of Pi, 3.14159265358979, accurate to 15 digits.
+ COS (
-- Returns the cosine of the given angle.
'Table'[Current Lat] * PI () / 180
)
* COS ( 'Table'[Destination Lat] * PI () / 180 )
* POWER (
SIN ( 'Table'[Current Long] - 'Table'[Destination Long] )
* PI () / 360,
2
)
)
)
Reference:
https://docs.microsoft.com/en-us/dax/sqrt-function-dax
https://docs.microsoft.com/en-us/dax/asin-function-dax
https://docs.microsoft.com/en-us/dax/power-function-dax
https://docs.microsoft.com/en-us/dax/sin-function-dax
https://docs.microsoft.com/en-us/dax/cos-function-dax
https://docs.microsoft.com/en-us/dax/pi-function-dax
Advanced scenario:
Now we have two tables.
The Customer table contains the coordinates of some customers.
And the Store table contains the coordinates of some stores.
By flexibly using the above formula of calculating distance, we can get the nearest store for each user and also get the distance from each user to their nearest store.
Nearest Store =
CALCULATE (
FIRSTNONBLANK ( Store[Store], 0 ),
TOPN (
1,
Store,
12742
* ASIN (
SQRT (
POWER ( SIN ( Customer[Latitude] - Store[Latitude] ) * PI () / 360, 2 )
+ COS ( Customer[Latitude] * PI () / 180 )
* COS ( Store[Latitude] * PI () / 180 )
* POWER ( SIN ( Customer[Longitude] - Store[Longitude] ) * PI () / 360, 2 )
)
), ASC
)
)
Distance to Nearest Store (KM) =
MINX (
Store,
12742
* ASIN (
SQRT (
POWER ( SIN ( Customer[Latitude] - Store[Latitude] ) * PI () / 360, 2 )
+ COS ( Customer[Latitude] * PI () / 180 )
* COS ( Store[Latitude] * PI () / 180 )
* POWER ( SIN ( Customer[Longitude] - Store[Longitude] ) * PI () / 360, 2 )
)
)
)
Author: Jay Wang
Reviewer: Ula Huang, Kerry Wang
You must be a registered user to add a comment. If you've already registered, sign in. Otherwise, register and sign in.